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Abstract. Typical textual descriptions that accompany online videos are ‘weak’:
i.e., they mention the main concepts in the video but not their corresponding
spatio-temporal locations. The concepts in the description are typically heteroge-
neous (e.g., objects, persons, actions). Certain location constraints on these con-
cepts can also be inferred from the description. The goal of this paper is to present
a generalization of the Indian Buffet Process (IBP) that can (a) systematically in-
corporate heterogeneous concepts in an integrated framework, and (b) enforce
location constraints, for efficient classification and localization of the concepts
in the videos. Finally, we develop posterior inference for the proposed formu-
lation using mean-field variational approximation. Comparative evaluations on
the Casablanca and the A2D datasets show that the proposed approach signifi-
cantly outperforms other state-of-the-art techniques: 24% relative improvement
for pairwise concept classification in the Casablanca dataset and 9% relative im-
provement for localization in the A2D dataset as compared to the most competi-
tive baseline.

1 Introduction

Watching and sharing videos on social media has become an integral part of everyday
life. We are often intrigued by the textual description of the videos and intend to fast-
forward to the segments of interest without watching the entire video. However, these
textual descriptors usually do not specify the exact segment of the video associated with
a particular description. For example, someone describing a movie clip as “head-on col-
lision between cars while Chris Cooper is driving” neither provide the time-stamps for
the collision or driving events nor the spatial locations of the cars or Chris Cooper.
Such descriptions are referred to as ‘weak labels’. For efficient video navigation and
consumption, it is important to automatically determine the spatio-temporal locations
of these concepts (such as ‘collision’ or ‘cars’). However, it is prohibitively expensive
to train concept-specific models for all concepts of interest in advance and use them for
localization. This shortcoming has triggered a great amount of interest in jointly learn-
ing concept-specific classification models as well as localizing concepts from multiple
weakly labeled images [1,2,3] or videos [4,5].

Video descriptions include concepts which may refer to persons, objects, scenes
and/or actions and thus a typical description is a combination of heterogeneous con-
cepts. In the running example, extracted heterogeneous concepts are ‘car’ (object),
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‘head-on collision’ (action), ‘Chris Cooper’ (person) and ‘driving’ (action). Learning
classifiers for these heterogeneous concepts along with localization is an extremely
challenging task because: (a) the classifiers for different kinds of concepts are required
to be learned simultaneously, e.g., a face classifier, an object classifier, an action classi-
fier etc., and (b) the learning model must take into account the spatio-temporal location
constraints imposed by the descriptions while learning these classifiers. For example,
the concepts ‘head-on collision’ and ‘cars’ should spatio-temporally co-occur at least
once and there should be at least one car in the video.

Recently there has been growing interest to jointly learn concept classifiers from
weak labels [1,5]. Bojanowski et al [5] proposed a discriminative clustering framework
to jointly learn person and action models from movies using weak supervision provided
by the movie scripts. Since weak labels are extracted from scripts, each label can be as-
sociated with a particular shot in the movie which may last only for a few seconds,
i.e., the labels are well localized and that makes the overall learning easier. However, in
real world videos, one does not have access to such shot-level labels but only to video-
level labels. Therefore in our work, we do not assume availability of such well localized
labels, and tackle a more general problem of learning concepts from the weaker video-
level labels. The framework in [5], when extended to long videos does not give satisfac-
tory results (see section 4). Such techniques, which are based on a linear mapping from
features to labels and model background using only a single latent factor, are usually
inadequate to capture all the inter-class and intra-class variations. Shi et al [1] jointly
learn object and attribute classifiers from images using weakly supervised Indian Buffet
Process (IBP). Note that IBP [6,7] allows observed features to be explained by a count-
ably infinite number of latent factors. However, the framework in [1] is not designed
to handle heterogeneous concepts and location constraints, which leads to a significant
degradation in performance (section 4.3). [8] and [9] propose IBP based cross-modal
categorization/query image retrieval models which learn semantically meaningful ab-
stract features from multimodal (image, speech and text) data. However, these unsuper-
vised approaches do not incorporate any location constraints which naturally arise in
the weakly supervised setting with heterogeneous labels.

We propose a novel Bayesian Non-parametric (BNP) approach called WSC-SIIBP
(Weakly Supervised, Constrained & Stacked Integrative IBP) to jointly learn heteroge-
neous concept classifiers and localize these concepts in videos. BNP models are a class
of Bayesian models where the hidden structure that may have generated the observed
data is not assumed to be fixed. Instead, a framework is provided that allows the com-
plexity of the model to increase as more data is observed [10]. Specifically, we propose:

1. A novel generalization of IBP which for the first time incorporates weakly super-
vised spatio-temporal location constraints and heterogeneous concepts in an inte-
grated framework.

2. Posterior inference of WSC-SIIBP model using mean-field variational approxima-
tion.

We assume that the weak video labels come in the form of tuples: in the run-
ning example, the extracted heterogeneous concept tuples are ({car, head-on colli-
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Fig. 1: Pipeline of WSC-SIIBP. Multiple videos with heterogeneous weak labels are provided as
input and localization and classification of the concepts are performed in these videos.

sion}, {Chris Cooper, driving})1. We perform experiments on two video datasets (a) the
Casablanca movie dataset [5] and (b) the A2D dataset [11]. We show that the proposed
approach WSC-SIIBP outperforms several state-of-the-art methods for heterogeneous
concept classification and localization in a weakly supervised setting. For example,
WSC-SIIBP leads to a relative improvement of 7%, 5% and 24% on person, action and
pairwise classification accuracies, respectively, over the most competitive baselines on
the Casablanca dataset. Similarly, the relative improvement on localization accuracy is
9% over the next best approach on the A2D dataset.

2 Related Work

In this section, we discuss relevant prior work in two broad categories.
Weakly Supervised Learning: Localizing concepts and learning classifiers from weakly
annotated data is an active research topic. Researchers have learned models for various
concepts from weakly labeled videos using Multi-Instance Learning (MIL) [12,13] for
human action recognition[14], visual tracking [15] etc. Cour et al [16] uses a novel
convex formulation to learn face classifiers from movies and TV series using multi-
modal features which are obtained from finely aligned screenplay, speech and video
data. In [17,4], the authors propose discriminative clustering approaches for aligning
videos with temporally ordered text descriptions or predefined tags and in the process
also learn action classifiers. In our approach, we consider weak labels which are nei-
ther ordered nor aligned to any specific video segment. [18] proposes a method for
learning object class detectors from real world web videos known to contain only the
target class by formulating the problem as a domain adaptation task. [19] learns weakly
supervised object/action classifiers using a latent-SVM formulation where the objects
or actions are localized in training images/videos using latent variables. We note that -
both [18,19] consider only a single weak label per video and unlike our approach, do not

1 Extracting the concept tuples from textual descriptions of the videos is an interesting research
problem in itself and is beyond the scope of this paper.
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jointly learn the heterogeneous concepts. The authors in [20,21] use dialogues, scene
and character identification to find an optimal mapping between a book and movie shots
using shortest path or CRF approach. However, these approaches neither jointly model
heterogeneous concepts nor spatio-temporally localized them. Although [22] proposes
a discriminative clustering model for coreference resolution in videos, only faces are
considered in their experiments.
Heterogeneous concept learning: There are prior works on automatic image [23,24,25]
and video [26,27,28] caption generation, where models are trained on pairs of im-
age/video and text that contain heterogeneous concept descriptions to predict captions
for novel images/videos. While most of these approaches rely on deep learning meth-
ods to learn a mapping between an image/video and the corresponding text descrip-
tion, [25] uses MIL to learn visual concept detectors (spatial localization in images)
for nouns, verbs and adjectives. However, none of these approaches spatio-temporally
localize points of interests in videos. Perhaps the available video datasets are not large
enough to train such a weakly supervised deep learning model.

To the best of our knowledge there is no prior work that jointly classifies and local-
izes heterogeneous concepts in weakly supervised videos.

3 WSC-SIIBP: Model and Algorithm

In this section, we describe the details of WSC-SIIBP (see figure 1 for the pipeline). We
first introduce notations and motivate our approach in sections 3.1 and 3.2 respectively.
This is followed by section 3.3 where we introduce stacked non-parametric graphical
model - IBP and its corresponding posterior computation. In sections 3.4 and 3.5, we
formulate an extension of the stacked IBP model which can generalize to heterogeneous
concepts as well as incorporate the constraints obtained from weak labels. In section
3.6, we briefly describe the inference procedure using truncated mean-field variational
approximation and summarize our entire algorithm. Finally, we discuss how one can
classify and localize concepts in new test videos using WSC-SIIBP.

3.1 Notation

Assume we are given a set of weakly labeled videos denoted by Λ =
{
(i, Γ (i))

}
,

where i indicates a video and Γ (i) denotes the heterogeneous weak labels correspond-
ing to the i-th video. Although the proposed approach can be used for any number of
heterogeneous concepts, for readability, we restrict ourselves to two concepts and call
them subjects and actions. We also have a closed set of class labels for these hetero-
geneous concepts: for subjects S = (s1, . . . , sKs

) and for actions A = (a1, . . . , aKa
).

Let Ks = |S|, Ka = |A|, Γ (i) =
{
(sl, al) : sl ∈ S ∪ ∅, al ∈ A ∪ ∅, 1 ≤ l ≤ |Γ (i)|

}
, ∅

indicate that the corresponding subject or action class label is not present and M = |Λ|
represents the number of videos. The video-level annotation simply indicates that the
paired concepts Γ (i) can occur anywhere in the video and at multiple locations.

Assume that Ni spatio-temporal tracks are extracted from each video i where each
track j is represented as an aggregation of multiple local features, x

(i)
j . The spatio-

temporal tracks could be face tracks, 3-D object proposals or action proposals (see sec-
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tion 4.1 for more details). We associate the jth track in video i to an infinite binary la-
tent coefficient vector z

(i)
j [6,1]. Each video i is represented by a bag of spatio-temporal

tracks X(i) = {x(i)
j , j = 1, . . . , Ni}. Similarly, Z(i) = {z(i)j , j = 1, . . . , Ni}.

3.2 Motivation

Our objective is to learn (a) a mapping between each of the Ni tracks in video i and
the labels in Γ (i) and (b) the appearance model for each label identity such that the
tracks from new test videos can be classified. To achieve these, it is important for any
model to discover the latent factors that can explain similar tracks across a set of videos
with a particular label. In general, the number of latent factors are not known apriori
and must be inferred from the data. In Bayesian framework, IBP treats this number as
a random variable that can grow with new observations, thus letting the model to effec-
tively explain the unbounded complexity in the data. Specifically, IBP defines a prior
distribution over an equivalence class of binary matrices of bounded rows (indicating
spatio-temporal tracks) and infinite columns (indicating latent coefficients). To achieve
our goals, we build on IBP and introduce WSC-SIIBP model which can effectively
learn the latent factors corresponding to each heterogeneous concept and utilize prior
location constraints to reduce the ambiguity in the learning through the knowledge of
other latent coefficients.

3.3 Indian Buffet Process (IBP)

The spatio-temporal tracks in the videos Λ are obtained from an underlying generative
process. Specifically, we consider a stacked IBP model [1] as described below.

– For each latent factor k ∈ 1 . . .∞,
1. Draw an appearance distribution with mean ak ∼ N (0, σ2

AI)

– For each video i ∈ 1 . . .M ,
1. Draw a sequence of i.i.d. random variables, v(i)1 , v

(i)
2 · · · ∼ Beta(α, 1)

2. Construct the prior on the latent factors, π(i)
k =

∏k
t=1 v

(i)
t , ∀k ∈ 1 . . .∞,

3. For jth subject track in ith video, where j ∈ 1 . . . Ni,
(a) Sample state of each latent factor, z(i)jk ∼ Bern(π(i)

k ),

(b) Sample track appearance, x
(i)
j ∼ N

(
z
(i)
j A, σ2

nI
)

where α is the prior controlling the sparsity of latent factors, σ2
A and σ2

n are the prior
appearance and noise variance shared across all factors, respectively. Each ak forms
kth row of A and the value of the latent coefficient z(i)jk indicates whether data x

(i)
j

contains the kth latent factor or not. In the above model, we have used stick-breaking
construction [29] to generate the π(i)

k s.
Posterior: Now, we describe how the posterior is obtained for the above graphical
model. Let Y =

{
π(1) . . . π(M),Z(1) . . .Z(M),A

}
and Θ =

{
α, σ2

A, σ
2
n

}
denote hid-

den variables and prior parameters, respectively. X denotes the concatenation of all
the spatio-temporal tracks in all M videos,

{
X(1) . . .X(M)

}
. Given prior distribution
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Ψ(Y|Θ) and likelihood function p(x(i)
j |Y,Θ), the posterior probability is given by

(using Bayes theorem),

p(Y|X,Θ) =
Ψ(Y|Θ)

∏M
i=1

∏Ni

j=1 p(X
(i)
j |Y,Θ)

p(X|Θ)
(1)

Ψ(Y|Θ) =

∞∏
k=1

 M∏
i=1

p(π
(i)
k |α)

Ni∏
j=1

p(z
(i)
jk |π

(i)
k )

 p(ak.|σ2
A)

where p(X|Θ) is the marginal likelihood. For simplicity, we denote p(Y|X,Θ) as
q(Y). Apart from the significance of inferring Z(i) for identifying track-level labels,
inferring prior π(i)

k for each video helps to identify video-level labels, while the infer-
ence of appearance model A will be used to classify new test samples (see section 3.6).
Thus, learning in our model requires computing the full posterior distribution over Y.
Regularized posterior: We note that it is difficult to infer regularized posterior distri-
butions using Equation (1). Zellner in [30] demonstrated that the posterior distribution
in (1) can also be obtained as the solution q(Y) of the following optimization problem,

min
q(Y)

KL (q(Y)||Ψ(Y|Θ))−
M∑
i=1

Ni∑
j=1

∫
log p(x

(i)
j |Y,Θ)q(Y)dY

s.t. q(Y) ∈ Pprob

(2)

where KL(.) denotes the Kullback-Liebler divergence and Pprob is the probability sim-
plex. As we will see later, this procedure enables us to learn posterior distribution using
constrained optimization framework.

3.4 Integrative IBP

Our objective is to model heterogeneous concepts (such as subjects and actions) using
a graphical model. However, the IBP model described above can not handle multiple
concepts because it is highly unlikely that the subject and the action features can be
explained by the same statistical model. Hence, we propose an extension of stacked IBP
for heterogeneous concepts, where different concept types are modeled using different
appearance models.

Let the subject and action types corresponding to the spatio-temporal track j in video
i be denoted by xs(i)

j and xa(i)
j , respectively, with each having different dimensions De

(e ∈ {s, a})2. Unlike the IBP model, Xs(i)
j and Xa(i)

j are now represented using two

different gaussian noise models N (z
(i)
j As, σ2

nsI) and N (z
(i)
j Aa, σ2

naI) respectively
where σ2

ne denotes prior noise variance and Ae are K × De matrices (K→ ∞). The
mean of the subject and action appearance models for each latent factor are also sampled
independently from gaussian distributions of different variances σ2

Ae. The new posterior

2 We often use e as a replacement of s and a throughout the paper.
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probability is given by,

q̃(Y) =
Ψ(Y|Θ)

∏M
i=1

∏Ni

j=1

∏
e∈{s,a} p(x

e(i)
j |Z,Ae,Θ)

p(X|Θ)

Ψ(Y|Θ) =

∞∏
k=1

 M∏
i=1

p(π
(i)
k |α)

Ni∏
j=1

p(z
(i)
jk |π

(i)
k )

∏
e∈{s,a}

p(aek|σ2
AeI)

(3)

3.5 Integrative IBP with Constraints

Although the graphical model described above is capable of handling heterogeneous
features, the location constraints inferred from the weak labels still need to be incor-
porated into the graphical model. As motivated in section 1, the concepts ‘head-on
collision’ and ‘cars’ should spatio-temporally co-occur at least once and there should
be at least one car in the full video. Imposing these location constraints in the inference
algorithm can lead to more accurate parameter estimation of the graphical model and
faster convergence of the inference procedure. These constraints can be generalized as
follows,
1. Every label tuple in Γ (i), is associated with at least one spatio-temporal track (i.e.,

the event occurs in the video).
2. Spatio-temporal tracks should be assigned a label only from the list of weak labels

assigned to the video. Concepts present in the video but not in the label will be
subsumed in the background models.

Ideally in the case of noiseless labels, these constraints should be strictly followed.
However, we assume that real-world labels could be noisy and noise is independent of
the videos. Hence, we allow constraints to be violated but penalize the violations using
additional slack variables.

We associate the first Ks and the following Ka latent factors (the rows of A) to
the subject and action classes in S and A respectively. The inferred values of their
corresponding latent coefficients in z

(i)
j are used to determine the presence/absence of

the associated concept in a particular spatio-temporal track. The remaining unbounded
number of latent factors are used to explain away the background tracks from unknown
action and subject classes in a video. With these assignments, we enforce the following
constraints on latent factors which are sufficient to satisfy the conditions mentioned
earlier.

To satisfy 1, we introduce the following constraints, ∀i ∈ 1 . . .M, and ∀j ∈
1 . . . Ni,

Ni∑
j=1

z
(i)
js z

(i)
ja ≥ 1− ξ(i)(s,a), ∀(s, a) ∈ Γ (i) (4)

Ni∑
j=1

z
(i)
js ≥ 1− ξ(i)(s,∅), ∀(s, ∅) ∈ Γ (i) (5)

Ni∑
j=1

z
(i)
ja ≥ 1− ξ(i)(∅,a), ∀(∅, a) ∈ Γ (i) (6)
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Fig. 2: WSC-SIIBP: Graphical Model
using two heterogeneous concepts,
subjects and actions. Each video (de-
scribed by video-level labels L) is in-
dependently modeled using latent fac-
tor prior π and contains Ni tracks.
Each track is represented using subject
and action features Xs and Xa respec-
tively, which are modeled using Gaus-
sian appearance models As and Aa.
z are the binary latent variables indi-
cating the presence or absence of the
latent factors in each track. c denotes
the set of location constraints extracted
from the video labels.

where ξ is the slack variable, zjs and zja are the latent factor coefficients corresponding
to subject class s and action class a respectively.

To satisfy 2, we use the following constraints, ∀i ∈ 1 . . .M and ∀j ∈ 1 . . . Ni,

z
(i)
js = 0, if @(s, ∅) ∈ Γ (i) and @(s, a) ∈ Γ (i),∀a ∈ A (7)

z
(i)
ja = 0, if @(∅, a) ∈ Γ (i) and @(s, a) ∈ Γ (i),∀s ∈ S (8)

The constraints defined in (4)-(8) have been used in the context of discriminative
clustering [22,5]. However, our model is the first to use these constraints in a Bayesian
setup. In their simplest form, they can be enforced using the point estimate of z e.g.,
MAP estimation. However, Z(i) is defined over the entire probability space. To en-
force the above constraints in a Bayesian framework, we need to account for the uncer-
tainty in Z(i). Following [31,32], we define effective constraints as an expectation of
the original constraints in (4)-(8), where the expectation is computed w.r.t. the poste-
rior distribution in (3) (see supplementary material for the expectation constraints). The
proposed graphical model, incorporating heterogeneous concepts as well as the location
constraints provided by the weak labels, is shown in figure 2.

We restrict the search space for posterior distribution in Equation (3) by using the
expectation constraints. In order to obtain the regularized posterior distribution of the
proposed model, we solve the following optimization problem under these expectation
constraints,

min
q̃(Y),ξ(i)

KL
(
q̃(Y)||Ψ̃(Y|Θ)

)
−

M∑
i=1

Ni∑
j=1

∫  ∑
e∈{s,a}

log p
(
Xe(i)

j |Y,Θ
) q̃(Y)dY

+C

M∑
i=1

∑
J∈Γ (i)

ξ
(i)
J

s.t. q̃(Y) ∈ Pprob (9)
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3.6 Learning and Inference

Note that the variational inference for true posterior q̃(Y) (in Equation (3)) is intractable
over the general space of probability functions. To make our problem easier to solve,
we establish truncated mean-field variational approximation [29] to the desired poste-
rior q̃(Y), such that the search space Pprob is constrained by the following tractable
parametrised family of distributions,

w̃(Y) =

M∏
i=1

(
Kmax∏
k=1

p(v
(i)
k |τ

(i)
k1 , τ

(i)
k2 )

Ni∏
j=1

p(z
(i)
jk |ν

(i)
jk )

)
Kmax∏
k=1

∏
e∈{s,a}

p(aek|Φe
k, σ

2
keI) (10)

where p(v(i)k |τ
(i)
k1 , τ

(i)
k2 ) = Beta(v(i)k ; τ

(i)
k1 , τ

(i)
k2 ), p(z

(i)
jk |ν

(i)
jk ) = Bern(z(i)jk ; ν

(i)
jk ) and

p(aek|Φe
k, σ

2
keI) = N (aek;Φ

e
k, σ

2
keI). In Equation (10), we note that all the latent vari-

ables are modeled independently of all other variables, hence simplifying the inference
procedure. The truncated stick breaking process of π(i)

k ’s is bounded at Kmax, wherein
πk = 0 for k > Kmax � Ks +Ka +Kbg . Kbg indicates the number of latent factors
chosen to explain background tracks.

The optimization problem in Equation (9) is solved using the posterior distribution
from Equation (10). We obtain the parameters (see supplementary material for details)
σ2
ke,Φ

e
k, τ (i)ke and ν(i)jk for the optimal posterior distribution q̃(Y) using iterative update

rules as summarized in Algorithm 1. The mean of binary latent coefficients zjk, denoted
by νjk, has an update rule which will lead to several interesting observations.

ν
(i)
jk =

L
(i)
k

1 + e−ζ
(i)
jk

(11)

ζ
(i)
jk =

k∑
j=1

(
Ψ(τ

(i)
j1 )− Ψ(τ (i)j1 + τ

(i)
j2 )
)
− Lk −

∑
e∈{s,a}

1

2σ2
ne

(
Deσ2

ke + Φe
kΦ

eT
k

)

+
∑

e∈{s,a}

1

σ2
ne

Φe
k

x
(i)
j −

∑
l 6=k

ν
(i)
jl Φe

l

T

+ C
∑

J∈Γ (i)

J=(k,a)

I{∑Ni
l=1

ν
(i)
lk
ν
(i)
la
<1

}ν(i)ja
︸ ︷︷ ︸

(i)

+ C

(ii)︷ ︸︸ ︷∑
J∈Γ (i)

J=(s,k)

I{∑Ni
l=1

ν
(i)
ls
ν
(i)
lk
<1

}ν(i)js +C

(iii)︷ ︸︸ ︷
I{∑Ni

l=1
ν
(i)
lk
<1,k≤Ka+Ks

}

(12)

where Ψ(.) is the digamma function, I is an indicator function, L(i)
k is an indicator

variable andLk is a lower bound for Ew̃[log(1−
∏k
j=1 v

(i))]. TheL(i)
k indicates whether

a concept (action/subject) k is part of ith video label set Γ (i) or not. If L(i)
k = 0,

all the corresponding binary latent coefficients z(i)jk , j = {1, . . . , Ni}, are forced to 0,
which is equivalent to enforcing the constraints in Equation (7) and (8). Note that the
value of ν(i)jk increases with ζ(i)jk . The terms (i)-(iii) in the update rule for ζ(i)jk (Equation
(12)), which are obtained due to the location constraints in Equation (4)-(6), act as the
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coupling terms between ν(i)je ’s. For example, for any action concept, term (ii) suggests
that if the location constraints are not satisfied, better localization of all the coupled
subject concepts (high value of ν(i)js ) will drive up the value of ζ(i)ja . This implies that
the strong localization of one concept can lead to better localization of other concepts.

The hyperparameter σ2
ne and σ2

Ae can be set apriori or estimated from data. Similar
to the maximization step of EM algorithm, their empirical estimation can easily be
obtained by maximizing the expected log-likelihood (see supplementary material).

Algorithm 1 Learning Algorithm of WSC-SIIBP

1: Input: data Λ = {(i,Γ(i))}i∈1...M , constant α,Kmax, C
2: Output: distribution p(v), p(Z), p(As), p(Aa) and hyper-parameters σ2

ns, σ
2
na, σ

2
As and σ2

Aa

3: Initialize: τ (i)k1 = α, τ
(i)
k2 = 1, ν

(i)
jk = 0.5,Φs

k = Φa
k = 0, σ2

ks = σ2
ka = σ2

ns = σ2
na = σ2

As =

σ2
Aa = 1

4: repeat
5: repeat
6: update σ2

ke and Φe
k. , ∀1 ≤ k ≤ Kmax, e ∈ {s, a};

7: update τ (i)k1 and τ (i)k2 , ∀1 ≤ k ≤ Kmax and i ∈ 1 to M;
8: update ν(i)jk using Equation (11) and (12), ∀1 ≤ k ≤ Kmax, 1 ≤ j ≤ Ni and i ∈ 1 to M;

9: until T iterations or ‖L(t−1)−L(t)‖
L(t)

≤ 1e−3

10: update the hyperparameters σ2
As, σ

2
Aa, σ2

ns, σ2
na

11: until T’ iterations or ‖L(t′−1)−L(t′)‖
L(t′) ≤ 1e−4

Given the input features Xs and Xa, the inferred latent coefficients ν(i)je estimate
presence/absence of associated classes in a video. One can classify each spatio-temporal
track by estimating the track-level labels usingL∗j = argmaxk νjk. Here the maximiza-
tion is over the latent coefficients corresponding to either the subject or action concepts
depending upon the label which we are interested in extracting. For the concept local-
ization task in a video with label pair (s, a), the best track in the video is selected using
j∗ = argmaxj νjs × νja.

Test Inference: Although the above formulation is proposed for concept classification
and localization in a given set of videos (transductive setting), the same algorithm can
also be applied to unseen test videos. The latent coefficients for the tracks of test videos
can be learned alongside the training data except that the parameters σ2

ke, Φ
e
k., σ2

Ae and
σ2
ne are updated only using training data. In the case of free annotation, i.e., absence of

labels for test video i, we run the proposed approach by setting L(i)
k = 1 in eq (11),

indicating that the tracks in a video i can belong to any of the classes in S orA (i.e., no
constraints as defined by (4)-(8) are enforced).
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4 Experimental Results

In this section, we present an evaluation of WSC-SIIBP on two real-world databases:
Casablanca movie and A2D dataset, which represent typical ‘in-the-wild’ videos with
weak labels on heterogeneous concepts.

4.1 Datasets

Casablanca dataset: This dataset, introduced in [5], has 19 persons (movie actors) and
three action classes (sitdown, walking, background). The heterogeneous concepts used
in this dataset are persons and actions. The Casablanca movie is divided into shorter
segments of duration either 60 or 120 seconds. We manually annotate all the tracks in
each video segment which may contain multiple persons and actions. Given a video
segment and the corresponding video-level labels (extracted from all ground truth track
labels), our algorithm maps each of these labels to one or more tracks in that segment,
i.e., converts the weak labels to strong labels. Our main objective of evaluation on this
dataset is to compare the performance of various algorithms in classifying tracks from
videos of varying length.

For our setting, we consider face and action as the two heterogeneous concepts
and thus it is required to extract the face and the corresponding action track features.
We extract 1094 facial tracks from the full 102 minute Casablanca video. The face
tracks are extracted by running the multi-view face detector from [33] in every frame
and associating detections across frames using point tracks [34]. We follow [35] to
generate the face track feature representations: Dense rootSIFT features are extracted
for each face in the track followed by PCA and video-level Fisher vector encoding. The
action tracks corresponding to 1094 facial tracks are obtained by extrapolating the face
bounding-boxes using linear transformation [5]. For action features, we compute Fisher
vector encoding on dense trajectories [36] extracted from each action track.

On an average, each 60 sec. segment contains 11 face-action tracks and 4 face-
action annotations while each 120 sec. video contains 21 tracks and 6 annotations. Note
that, our experimental setup is more difficult compared to the experimental setting con-
sidered in [5]. In [5], the Casablanca movie is divided into numerous bags based on the
movie script, where on average each segment is of duration 31 sec. containing only 6.27
face-action tracks.
A2D dataset: This dataset [11] contains 3782 YouTube videos (on average 7-10 sec-
onds long) covering seven objects (ball, bird, car etc.) performing one of nine actions
(fly, jump, roll etc.). The heterogeneous concepts considered are objects and actions.
This dataset provides the bounding box annotations for every video label pair of object
and action. Using the A2D dataset, we aim to analyze the track localization performance
on weakly labeled videos as well as the track classification accuracy on a held-out test
dataset.

We use the method proposed in [37] to generate spatio-temporal object track pro-
posals. For computational purpose, we consider only 10 tracks per video and use the
Imagenet pretrained VGG CNN-M network [38] to generate object feature representa-
tion. We extract convolutional layer conv-4 and conv-5 features for each track image
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followed by PCA and video-level Fisher vector encoding. In this dataset, the corre-
sponding action tracks are kept similar to the object tracks (proposals) and the action
features are extracted using the same approach as used for the Casablanca dataset.

4.2 Baselines

We compare WSC-SIIBP to several state-of-the-art approaches using the same features.

1. WS-DC [5]: This approach uses similar weak constraints as in (4)-(6), but in a dis-
criminative setup where the constraints are incorporated in a biconvex optimization
framework.

2. WS-SIBP [1]: This is a weakly supervised stacked IBP model which does not con-
sider integrative framework for heterogeneous data and only enforces constraints
equivalent to (7)-(8). For each spatio-temporal track, the features extracted for het-
erogeneous concepts are concatenated while using this approach.

3. WS-S / WS-A: This is similar to WS-SIBP except that instead of concatenating
features from multiple concepts they are treated independently in two different IBP.
WS-S is used to model only the person/object features and WS-A is used to model
the action features.

4. WS-SIIBP: This model integrates WS-SIBP with heterogeneous concepts.
5. WSC-SIBP: This model is similar to WS-SIBP, but unlike WS-SIBP, it additionally

enforces the location constraints obtained from weak labels.

Implementation details: For each dataset, the Fisher encoded features are PCA re-
duced to an appropriate dimension, De. We select the best feature length and other al-
gorithm specific hyper-parameters for each algorithm using cross-validation on a small
set of input videos. For the IBP based models, the cross-validation range for hyper-
parameters are Kmax := Ka +Ks : 10 : Ka +Ks + 100, α := 3Kmax : 10 : 4Kmax

and C := 0 : 0.5 : 5. For all IBP based models, the parameters De, α, Kmax and C are
set as 32, 100, 30 and 0.5 respectively for the Casablanca dataset and as 128, 160, 50
and 5 respectively for the A2D dataset. For WS-DC, De is set as 1024.

4.3 Results on Casablanca

The track-level classification performance is compared in Figure 3. From Figures 3a
and 3d, it can be seen that WSC-SIIBP significantly outperforms other methods for
person and action classification in almost all of the scenarios. For instance, in the 120
second video segments, person classification improves by 4% (relative improvement is
7%) compared to the most competitive approach WS-SIIBP. We also compare pairwise
label accuracy to gain insight into the importance of the constraints in eq (4)-(6). For
any given track with non-background person and action label, the classification is as-
sumed to be correct only if both person and action labels are correctly assigned. Even
in this scenario WSC-SIIBP performs 8.1% better (24% relative improvement) than
the most competitive baseline. Since we combine the heterogeneous concepts along
with location constraints in an integrated framework, WSC-SIIBP outperforms all other
baselines. The weak results of WS-DC in pairwise classification, though surprising, can
be attributed to their action classification results which are significantly biased towards
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Fig. 3: Comparison of results for the Casablanca movie dataset. (a) Classification accuracy for 60
sec. segments. (b) Recall for background vs non-background class (60 sec., person). (c) Recall
for background vs non-background (60 sec., action). (d) Classification accuracy for 120 sec.
segments. (e) Recall for background vs non-background class (120 sec., person). (f) Recall for
background vs non-background (120 sec., action). (g),(h) Mean Average Precision for 60, 120
sec. segments. (i) Classification accuracy obtained with and without constraints (7) and (8)

one particular action ‘sitdown’ (figure 3d, note that WS-DC performs very poorly in
‘walking’ classification). Indeed, it should be noted that nearly 40% and 89% of person
and action labels respectively belong to the background class. Thus, for fair evaluation
of both background and non-background classes, we also plot the recall of background
class against the recall of nonbackground classes for person and action classification in
Figure 3b, 3c, 3e, 3f. These curves were obtained by simultaneously computing recall
for background and non-background classes at a range of threshold values on score, ν.
The mean average precision (mAP) of WSC-SIIBP along with all other baselines are
plotted in Figure 3g and 3h. The mAP values also clearly demonstrate the effectiveness
of the proposed approach. From the performance of WS-SIIBP (integrative concepts, no
constraints) and WSC-SIBP (no integrative concepts, constraints) (Figure 3a and 3d),
it is clear that the improvement in performance in the WSC-SIIBP can be attributed to
both addition of integrative concepts and the location constraints.

Effect of constraints (7), (8): We note that, regardless of other differences, every
weakly supervised IBP model considered here enforces constraints (7), (8). However,
these constraints are not part of original WS-DC. To make a fair comparison between
WS-DC and WSC-SIIBP, we analyze the effect of these constraints in Figure 3i. Al-
though, these additional constraints improve WS-DC performance, they do not super-
sede the performance of WSC-SIIBP. Further we observe that these constraints have
improved the performance of all the weakly supervised IBP models.
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Fig. 4: (a) Correct localization accuracy at various IOU thresholds. (b) and (c) Qualitative results:
green boxes show the concept localization using our proposed approach.

4.4 Results on A2D

First, we evaluate localization performance on the full A2D dataset. We experiment
with 37,820 tracks extracted from 3,782 videos with around 5000 weak labels. For
every given object-action label pair our algorithm selects the best track from the corre-
sponding video using the approach outlined in (section 3.6). The localization accuracy is
measured by calculating the average IoU (Intersection over Union) of the selected track
(3-D bounding box) with the ground truth bounding box. The class-wise IoU accuracy
and the mean IoU accuracy for all classes are tabulated in Table 1 and 2 respectively.
In this task also WSC-SIIBP leads to a relative improvement of 9% above the next best
baseline. We also evaluate how accurately the extracted object proposals match with
the ground truth bounding boxes to estimate an upper bound on the localization accu-
racy (referred as Upper Bound in Table 1 and 2). In this case, the track maximizing
the average IoU with the ground truth annotation is selected and the corresponding IoU
is reported. We plot the correct localization accuracy with varying IoU thresholds in
figure 4a, which also shows the effectiveness of the proposed approach. Figure 4b-4c
shows some qualitative localization results using the proposed approach on a few track
images.
Test Inference: We evaluate the classification performance on held-out test samples us-
ing the same train/test partition as in [11]. We consider two setups for the evaluation,
(a) using video-level labels for the test samples and (b) free annotation where no test
video labels are provided. The proposed approach is compared with GT-SVM, which
is a fully supervised linear SVM that uses ground truth bounding boxes and their cor-
responding strong labels during training. The results are tabulated in Table 3. Note that
the performance of WSC-SIIBP is close to that of the fully supervised setup.

5 Conclusion

We developed a Bayesian non-parametric approach that integrates Indian Buffet Pro-
cess with heterogeneous concepts and spatio-temporal location constraints arising from
weak labels. We perform experimental results on two recent datasets containing het-
erogeneous concepts such as persons, objects and actions and show that our approach
outperforms the best state of the art method. In future work, we will extend the WSC-
SIIBP model to additionally localize audio concepts from speech input and develop an
end-to-end deep neural network for joint feature learning and Bayesian inference.
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adult baby ball bird car cat dog climb crawleat fly jump roll run walk
WSC-SIIBP 28.4 43.6 9.8 37.8 37.4 40.8 42.0 37.5 47.6 46.1 24.5 29.4 50.9 25.6 37.2
Upper Bound 39.9 53.9 16.4 48.2 48.7 52.8 51.4 50.0 59.2 57.2 33.9 41.0 59.1 38.1 47.9

Table 1: Per class mean IoU on A2D dataset.

Random WS-P WS-A WS-SIBP WS-SIIBP WSC-SIBP WSC-SIIBP Upper Bound
IoU 25.5 29.7 30.43 31.1 31.55 31.69 34.38 45.05

Table 2: Average IoU comparison with other approaches on A2D dataset.

WSC-SIIBP GT-SVM
Setup Obj Act Obj Act
Using video Labels 94.77 90.68 98.20 94.92
Free Annotation 76.62 64.77 85.18 73.26
Table 3: mAP classification test accuracy on A2D dataset.

6 Appendix

6.1 Expectation Constraints

In an Bayesian framework, the effective constraints for equations (4)-(8) are defined as
an expectation [31,32] of the original constraints and can be rewritten as,

∀i ∈ 1 . . .M,

Ni∑
j=1

Eq̃
[
z
(i)
js z

(i)
ja

]
≥ 1− ξ(i)(s,a), ∀(s, a) ∈ Γ (i) (S13)

Ni∑
j=1

Eq̃
[
z
(i)
js

]
≥ 1− ξ(i)(s,∅), ∀(s, ∅) ∈ Γ (i) (S14)

Ni∑
j=1

Eq̃
[
z
(i)
ja

]
≥ 1− ξ(i)(∅,a), ∀(∅, a) ∈ Γ (i) (S15)

∀i ∈ 1 . . .M and ∀j ∈ 1 . . . Ni,

Eq̃
[
z
(i)
js

]
= 0, if @(s, ∅) ∈ Γ (i) and @(s, a) ∈ Γ (i),∀a ∈ A (S16)

Eq̃
[
z
(i)
ja

]
= 0, if @(∅, a) ∈ Γ (i) and @(s, a) ∈ Γ (i),∀s ∈ S (S17)

where the expectation is taken w.r.t. the posterior distribution in (3). From (3) one may
note that through π(i)

a , the samples of z(i)ja depends on the previously sampled latent

coefficients such as z(i)js . This complicates the applicability of constraint in equation
(S13). However due to the independency assumption, the search space over the family
of tractable posterior distribution in (10) simplifies the constraint in equation (S13)-
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(S17) to,

∀i ∈ 1 . . .M,

Ni∑
j=1

ν
(i)
js ν

(i)
ja ≥ 1− ξ(i)(s,a), ∀(s, a) ∈ Γ (i) (S18)

Ni∑
j=1

ν
(i)
js ≥ 1− ξ(i)(s,∅), ∀(s, ∅) ∈ Γ (i) (S19)

Ni∑
j=1

ν
(i)
ja ≥ 1− ξ(i)(∅,a), ∀(∅, a) ∈ Γ (i) (S20)

∀i ∈ 1 . . .M and ∀j ∈ 1 . . . Ni,

ν
(i)
js = 0, if @(s, ∅) ∈ Γ (i) and (s, a) ∈ Γ (i),∀a ∈ A (S21)

ν
(i)
ja = 0, if @(∅, a) ∈ Γ (i) and (s, a) ∈ Γ (i),∀s ∈ S (S22)

6.2 Derivation of Posterior Update Equations

Now, note that the constraints in (S18)-(S20) can be rewritten as hinge loss function
and added as part of the objective function in equation (9). Hence the final formulation
is given by,

min
ν(i),τ(i),

Φ∗k,σ
2
k∗

KL
(
w̃(Y)||Ψ̃(Y|Θ)

)
−

M∑
i=1

Ni∑
j=1

∫  ∑
e∈{s,a}

log p
(
Xe(i)

j |Y,Θ
) w̃(Y)dY

+ C

M∑
i=1

 ∑
J∈Γ (i)

J=(s,a)

max

(
0, 1−

Ni∑
j=1

ν
(i)
js ν

(i)
ja

)
+

∑
J∈Γ (i)

J=(s,∅)

max

(
0, 1−

Ni∑
j=1

ν
(i)
js

)

+
∑

J∈Γ (i)

J=(∅,a)

max

(
0, 1−

Ni∑
j=1

ν
(i)
ja

)
s.t. ∀i ∈ 1 . . .M, and ∀j ∈ 1 . . . Ni, (S21), (S22)

(S23)

The objective function in eq. (S23) can be rewritten as,

L(ν(i), τ (i),Φ∗k, σ
2
k∗) = L −

M∑
i=1

Ni∑
j=1

(
Lij − C

Ka+Ks∑
k=1

H
(i)
jk

)
(S24)
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where L represent KL-divergence term, Lij denote the likelihood term and Hjk is the
term corresponding to hinge loss function for ν(i)jk . Expanding Lij , we get,

Lij , Ew̃
[
log p(Xs(i)

j |Y,Θ) + log p(Xa(i)
j |Y,Θ)

]
(S25)

= −
xs(i)
j

T
xs(i)
j − 2Ew̃[z(i)j. As]xs(i)

j + Ew̃[z(i)j. Usz
(i)
j.

T
]

2σ2
ns

− Ds log(2πσ2
ns)

2

−
xa(i)

j

T
xa(i)

j − 2Ew̃[z(i)j. Aa]xa(i)
j + Ew̃[z(i)j. Uaz

(i)
j.

T
]

2σ2
na

− Da log(2πσ2
na)

2
(S26)

where U∗ = Ew̃[A∗A∗T ] isKmax×Kmax matrix,U∗jk = Φ∗j.Φ
∗T
k.; Ew̃[z

(i)
j. A∗]x∗

(i)
j =(∑

k ν
(i)
jk Φ∗k.

)
x∗

(i)
j ; and

Ew̃[z(i)n. U∗z(i)n.
T
] = 2

∑
j<k

ν
(i)
nj ν

(i)
nkU

∗
jk +

∑
k

ν
(i)
nk

(
D∗σ2

k∗ + Φ∗k.Φ
∗T
k.

)
(S27)

For KL-divergence term, we get KL
(
w̃(Y)||Ψ̃(Y|Θ)

)
= KL

(
w̃(v)||Ψ̃(v|Θ)

)
+

KL
(
w̃(Z)||Ψ̃(Z|Θ)

)
+ KL

(
w̃(As)||Ψ̃(As|Θ)

)
+ KL

(
w̃(Aa)||Ψ̃(Aa|Θ)

)
, where

the individual terms are,

KL
(
w̃(v)||Ψ̃(v|Θ)

)
=

M∑
i=1

(
Kmax∑
k=1

(
(τ

(i)
k1 − α)(Ψ(τ

(i)
k1 )− Ψ(τ

(i)
k1 + τ

(i)
k2 )) + (τ

(i)
k2 − 1)(Ψ(τ

(i)
k2 )− Ψ(τ

(i)
k1 + τ

(i)
k2 ))

− log
Γ (τ

(i)
k1 )Γ (τ

(i)
k2 )

Γ (τ
(i)
k1 + τ

(i)
k2 )

)
−Kmax logα

)
(S28)

KL
(
w̃(Z)||Ψ̃(Z|Θ)

)
=

M∑
i=1

 Ni∑
j=1

Kmax∑
k=1

−ν(i)jk Kmax∑
j=1

(Ψ(τ
(i)
k1 )− Ψ(τ

(i)
k1 + τ

(i)
k2 ))− (1− ν(i)jk )Ew̃[log(1−

k∏
j=1

v(i))]

+ν
(i)
jk log ν

(i)
jk + (1− ν(i)jk ) log(1− ν

(i)
jk )
))

(S29)

KL
(
w̃(A∗)||Ψ̃(A∗|Θ)

)
=

Kmax∑
k=1

D∗σ2
k∗ + Φ∗kΦ

∗T
k

2σ2
A∗

−
D∗
(
1 + log

σ2
k∗
σ2
A∗

)
2


(S30)
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where Ψ(.) is the digamma function. As shown for original IBP in [29], the term
Ew̃[log(1−

∏k
j=1 v

(i))] is approximated by its lower bound,

Ew̃[log(1−
k∏
j=1

v(i))] ≥
k∑

m=1

qkmΨ(τ
(i)
m2) +

k−1∑
m=1

(
k∑

n=m+1

qkn

)
Ψ(τ

(i)
m1)

−
k∑

m=1

(
k∑

n=m

qkn

)
Ψ(τ

(i)
m1 + τ

(i)
m2) +H(qk.) (S31)

= Lk

where the variational parameter qk. = (qk1 . . . qkk) is k-point probability mass function
andH(qk.) denotes entropy of qk.. The tightest upper bound is obtained by setting,

qkm =
1

Zk
exp

(
Ψ(τ

(i)
m2) +

m−1∑
n=1

Ψ(τ
(i)
n1 )−

m∑
n=1

Ψ(τ
(i)
n1 + τ

(i)
n2 )

)

where Zk is the normalization factor to enable qk. to be a distribution. On replacing
the term Ew̃[log(1−

∏k
j=1 v

(i)
j )] with its lower bound Lk, we have an upper bound for

KL
(
w̃(Y)||Ψ̃(Y|Θ)

)
.

On substituting equation (S25)-(S31) in (S24), the optimum value for parameters of
mean-field variational approximate posterior distribution (10) are obtained by setting
the derivative of (S24) w.r.t. those parameters to zero and simultaneously solving for
all parameters (using KKT conditions). We derive the following equations which are
iteratively solved,

σ2
ke =

 1

σ2
Ae

+
1

σ2
ne

M∑
i=1

Ni∑
j=1

ν
(i)
jk

−1 , ∀e ∈ {s, a} (S32)

Φe
k =

 1

σ2
ne

M∑
i=1

Ni∑
j=1

ν
(i)
jk

xe(i)
j −

∑
l:l 6=k

ν
(i)
jl Φe

l

σ2
ke, ∀e ∈ {s, a} (S33)

τ
(i)
k1 = α+
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τ
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ν
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 q
(i)
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Above equations are somewhat similar to those given by variational approximation on
IBP [29]. The update equation for ν differs completely and it is given by,

ν
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L
(i)
k

1 + e−ζ
(i)
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(S36)
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where L(i)
k and I is an indicator variable. L(i)

k indicates whether an entity (action /
subject) k is part of ith video label set Γ (i) or not. This inturn enforces ν = 0 for all ν
satisfying eq. (S21) and eq. (S22).

The hyperparameter σ2
n∗ and σ2

A∗ can be set apriori or estimated from the data. The
empirical estimation can be easily derived by maximizing the expected log-likelihood,
which is similar to maximization step of EM algorithm. The closed form solution is
given by,

σ2
A∗ =

∑Kmax

k=1 D∗σ2
k∗ + Φ∗kΦ

∗T
k

KmaxD∗
(S38)
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T
]

)
(
∑M
i=1Ni)D

(S39)

The final algorithm is summarized in Algorithm 1 in the paper.

6.3 Additional Experimental Results

In this section we share some of the results which provides additional insights into
experiments.

Casablanca: The person class confusion matrix is shown in Figure 5. It exhibits
that our approach learns each person appearance model with high accuracy and it can
learn from as less as 15 weakly annotated samples.

A2D: Some of the additional qualitative results. In Figure 6, red boxes represents
generated proposals, green boxes represents the selected proposals using WSC-SIIBP
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Fig. 5: Person class confusion matrix. BG denotes the background class which can represent any
unknown face.

algorithm and magenta boxes represents the groundtruth annotation. In case of over-
lapping boxes (proposals), only the last plotted rectangular box is visible. Boxes were
plotted in the following order: red (first), magenta, green (last). Additionally, we have
attached videos alongside this supplementary material, depicting the generated propos-
als and their automatic selection.
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{ball, rolling},{dog, running} {human}, {bird, climbing}

{baby, walking}, {human} {dog, walking}, {human, walking}, {car}

{bird, eating},{cat}
Fig. 6: Qualitative results of weakly supervised concept localization on A2D dataset using WSC-
SIIBP algorithm. Tags are weak paired label input for the video.
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