Supplementary material for ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements

Kuldeep Kulkarni^{1,2}, Suhas Lohit¹, Pavan Turaga^{1,2}, Ronan Kerviche³, and Amit Ashok³

¹School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ ²School of Arts, Media and Engineering, Arizona State University, Tempe, AZ ³College of Optical Sciences, University of Arizona, Tucson, AZ

Figure 1: The figure shows qualitative results on tracking for 8 videos. The red bounding box is the location for ReconNet+KCF at 0.01 measurement rate, and the blue bounding box is the location for original videos + KCF.

1. More results

Reconstruction from noiseless CS measurements: In table 1 of the main paper, we presented the peak signal-to-noise ratio values for 4 of the 11 test images. Here, the PSNR values (in dB) for the remaining 7 test images for

various measurement rates are presented in Table 1.

Real-time high level vision from CS imagers: In the section 6 of the main paper, we showed the variation of average precision for 15 publicly available videos [5] (Blur-Body, BlurCar1, BlurCar2, BlurCar4, BlurFace, BlurOwl,

Image Name	Algorithm	MR = 0.25		MR = 0.10		MR = 0.04		MR = 0.01	
		w/o BM3D	w/BM3D	w/o BM3D	w/ BM3D	w/o BM3D	w/BM3D	w/o BM3D	w/BM3D
Monarch	TVAL3 [2]	27.77	27.77	21.16	21.16	16.73	16.73	11.09	11.11
	NLR-CS [1]	25.91	26.06	14.59	14.67	11.62	11.97	6.38	6.71
	D-AMP [3]	26.39	26.55	19.00	19.00	14.57	14.57	6.20	6.20
	SDA [4]	23.54	23.32	20.95	21.04	18.09	18.19	15.31	15.38
	ReconNet (Ours)	24.31	25.06	21.10	21.51	18.19	18.32	15.39	15.49
Parrot	TVAL3	27.17	27.24	23.13	23.16	18.88	18.90	11.44	11.46
	NLR-CS	26.53	26.72	14.14	14.16	10.59	10.92	5.11	5.44
	D-AMP	26.86	26.99	21.64	21.64	15.78	15.78	5.09	5.09
	SDA	24.48	24.36	22.13	22.35	20.37	20.67	17.70	17.88
	ReconNet (Ours)	25.59	26.22	22.63	23.23	20.27	21.06	17.63	18.30
Boats	TVAL3	28.81	28.81	23.86	23.86	19.20	19.20	11.86	11.88
	NLR-CS	29.11	29.27	14.82	14.86	10.76	11.21	5.38	5.72
	D-AMP	29.26	29.26	21.95	21.95	16.01	16.01	5.34	5.34
	SDA	26.56	26.25	24.03	24.18	21.29	21.54	18.54	18.68
	ReconNet (Ours)	27.30	27.35	24.15	24.10	21.36	21.62	18.49	18.83
Cameraman	TVAL3	25.69	25.70	21.91	21.92	18.30	18.33	11.97	12.00
	NLR-CS	24.88	24.96	14.18	14.22	11.04	11.43	5.98	6.31
	D-AMP	24.41	24.54	20.35	20.35	15.11	15.11	5.64	5.64
	SDA	22.77	22.64	21.15	21.30	19.32	19.55	17.06	17.19
	ReconNet (Ours)	23.15	23.59	21.28	21.66	19.26	19.72	17.11	17.49
Foreman	TVAL3	35.42	35.54	28.69	28.74	20.63	20.65	10.97	11.01
	NLR-CS	35.73	35.90	13.54	13.56	9.06	9.44	3.91	4.25
	D-AMP	35.45	34.04	25.51	25.58	16.27	16.78	3.84	3.83
	SDA	28.39	28.89	26.43	27.16	23.62	24.09	20.07	20.23
	ReconNet (Ours)	29.47	30.78	27.09	28.59	23.72	24.60	20.04	20.33
House	TVAL3	32.08	32.13	26.29	26.32	20.94	20.96	11.86	11.90
	NLR-CS	34.19	34.19	14.77	14.80	10.66	11.09	4.96	5.29
	D-AMP	33.64	32.68	24.84	24.71	16.91	17.37	5.00	5.02
	SDA	27.65	27.86	25.40	26.07	22.51	22.94	19.45	19.59
	ReconNet (Ours)	28.46	29.19	26.69	26.66	22.58	23.18	19.31	19.52
Peppers	TVAL3	29.62	29.65	22.64	22.65	18.21	18.22	11.35	11.36
	NLR-CS	28.89	29.25	14.93	14.99	11.39	11.80	5.77	6.10
	D-AMP	29.84	28.58	21.39	21.37	16.13	16.46	5.79	5.85
	SDA	24.30	24.22	22.09	22.34	19.63	19.89	16.93	17.02
	ReconNet (Ours)	24.77	25.16	22.15	22.67	19.56	20.00	16.82	16.96

Table 1: PSNR values in dB for 7 of the test images using different algorithms at different measurement rates (the PSNR for the other 4 test images and the mean PSNR are given in table 1 of the main paper).

Car2, CarDark, Dancer, Dancer2, Dudek, FaceOcc1, FaceOcc2, FleetFace, Girl2) as a function of location error threshold for both ReconNet+KCF at measurement rate of 0.01 and original videos + KCF. Here, in figure 1 we present qualitative results for 8 of those videos by overlaying on the original frames, the bounding boxes predicted for ReconNet+KCF (in red) and original videos+KCF (in blue). It can be seen that for the videos where the target object is of reasonably large size, ReconNet+KCF performs nearly as well as original videos + KCF. This indicates that the reconstruction output by ReconNet retain enough semantic information to reliably track medium to large sized targets. However, for very small sized targets, ReconNet+KCF performs poorly indicating that at measurement rate of 0.01, the reconstructed frames do not retain fine-grained information in the images.

References

- W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang. Compressive sensing via nonlocal low-rank regularization. *Image Processing, IEEE Transactions on*, 23(8):3618– 3632, 2014.
- [2] C. Li, W. Yin, H. Jiang, and Y. Zhang. An efficient augmented lagrangian method with applications to total variation minimization. *Computational Optimization and Applications*, 56(3):507–530, 2013. 2
- [3] C. A. Metzler, A. Maleki, and R. G. Baraniuk. From denoising to compressed sensing. arXiv preprint arXiv:1406.4175, 2014. 2
- [4] A. Mousavi, A. B. Patel, and R. G. Baraniuk. A deep learning approach to structured signal recovery. *arXiv* preprint arXiv:1508.04065, 2015. 2
- [5] Y. Wu, J. Lim, and M. Yang. Object tracking benchmark. *IEEE Trans. Pattern Anal. Mach. Intell.*, 37(9):1834–1848, 2015. 1