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Fast Integral Image Estimation at 1%
measurement rate

Kuldeep Kulkarni, Pavan Turaga

Abstract—We propose a framework called ReFInE to directly obtain integral image estimates from a very small number of
spatially multiplexed measurements of the scene without iterative reconstruction of any auxiliary image, and demonstrate their
practical utility in visual object tracking. Specifically, we design measurement matrices which are tailored to facilitate extremely
fast estimation of the integral image, by using a single-shot linear operation on the measured vector. Leveraging a prior model
for the images, we formulate a nuclear norm minimization problem with second order conic constraints to jointly obtain the
measurement matrix and the linear operator. Through qualitative and quantitative experiments, we show that high quality integral
image estimates can be obtained using our framework at very low measurement rates. Further, on a standard dataset of 50
videos, we present object tracking results which are comparable to the state-of-the-art methods, even at an extremely low
measurement rate of 1%.

Index Terms—Spatial-multiplexing cameras, Nuclear-norm minimization, Low sensing rates, Tracking, Integral Images
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1 INTRODUCTION

In this paper, we study the problem of obtaining inte-
gral image estimates from emerging flexible programmable
imaging devices. These novel imaging devices, often con-
sidered under the broad umbrella of spatial-multiplexing
cameras (SMCs)[1], [2], [3] provide a number of benefits
in reducing the amount of sensing for portable and re-
source constrained acquisition. The imaging architectures
in these cameras employ spatial light modulators like
digital micromirror arrays to optically compute projections
of the scene. Mathematically, the projections are given
by y = φx, where x ∈ Rn is the image, y ∈ Rm,
known as the measurement vector, denotes the set of sensed
projections and φ ∈ Rm×n is called measurement matrix
defined by the set of multiplexing patterns. The nature
of the acquisition framework enables us to deploy SMCs
in resource constrained settings, wherein one can employ
m << n number of photon detectors to sense otherwise
high-resolution imagery [2], [4] and obtain a very small
number of measurements. Later, a reconstruction algorithm
is used to recover the image x. However, reconstructing
x from y when m < n is an ill-posed problem. Re-
searchers in the past have attempted to provide solutions
by carefully designing the measurement matrix φ in the
hope of easier recovery of x from y. Recent compressive
sensing (CS) theory provides one possible solution to tackle
the above mentioned ill-posed problem. According to CS
theory, a signal can be recovered perfectly from a small
number of m = O(s log(ns )) such pseudo-random (PR)
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multiplexed measurements, where s is the sparsity of the
signal. However, a significant research shows that high-
quality reconstruction is computationally intensive [5], [6],
[7], [8]. Hence, despite the promise of CS-based SMCs
[2], [3], the computational bottleneck of non-linear, iterative
reconstruction has withheld their wide-spread adoption in
applications which require fast inference of objects, actions,
and scenes. This has led to researchers exploring the
option of tackling inference problems directly from these
pseudo-random multiplexed measurements [4], [9], [10],
[11], [12], [13], [14] (more on these later in the section
in related work). However, the ‘universal’ nature of such
measurements has made it challenging to devise new or
adopt existing computer vision algorithms to solve the
inference problem at hand.

The need to acquire as less data as possible combined
with the limitations of pseudo-random multiplexers props
us to outline the following goal. The goal of this paper is
to propose a novel sensing framework for SMCs such that
acquired measurements satisfy the following properties. 1)
The measurements are not random in nature but are tailored
for a particular application. 2) The number of measurements
is 2 orders less than the number of pixels, so that SMCs
based on our framework can be employed in resource
constrained applications. 3) A simple linear operation on
the measurement vector y yields a ‘proxy’ representation
(e.g integral images, gradient images) from which the
required features are extracted for the application in hand,
thus avoiding the computationally expensive iterative and
non-linear reconstruction.

In this paper, we focus on one such ‘proxy’ representa-
tion, integral images. Integral images are extremely attrac-
tive representation since Haar-like features and box-filtered
image outputs can be computed from integral images with
a small and fixed number of floating point operations in
constant time [15]. These advantages have led to their
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widespread use in real time applications like face detection
[15], pedestrian detection [16], object tracking [17], [18],
[19], [20] and object segmentation [21].

Instead of setting a fixed number of measurements, we
formulate an optimization problem to minimize the number
of measurements while incorporating the other two (1 and
3) properties of measurements (as mentioned above) in the
constraints. Minimizing the number of measurements is
akin to minimizing the rank of the measurement matrix.
In more concrete terms, the problem is posed to jointly
minimize the rank of the measurement matrix, φ and
learn the linear operator, L which when applied on the
measurement vector yields the approximate integral image,
with the probabilistic constraint that the error between the
approximate integral image and the exact integral image is
within allowable limits with high probability. By controlling
the allowable error limit, we can obtain measurement matrix
of the desired rank. Incorporating a wavelet domain prior
model for natural images combined with a relaxation (ex-
plained in section 2) allows us to convert the probabilistic
constraint into a series of second conic constraints. Rank
minimization is a NP-hard problem. Relaxing the objective
function to nuclear norm allows to use off-the-shelf convex
optimization tools to solve the problem and obtain the
measurement matrix and the linear operator.

Contributions: 1) The main contribution of the paper is
a novel framework to recover estimates of integral images
from a small number of spatially multiplexed measurements
without iterative reconstruction of any auxillary image. We
dub the framework ReFInE (Reconstruction-Free Integral
Image Estimation). 2) Leveraging the MGGD (multivari-
ate generalized Gaussian distribution) prior model for the
vector of detailed wavelet coefficients of natural images,
we propose a nuclear norm minimization formulation to
obtain a new specialized measurement matrix. We term the
measurements acquired with such a measurement matrix,
as ReFInE measurements. 3) On a large dataset of 4952
images, we present qualitative and quantitative results to
show that high quality estimates of integral images and
box-filtered outputs can be recovered from ReFInE mea-
surements in real-time. 4) We show object tracking results,
which are comparable to state-of-the-art methods, on a
challenging dataset of 50 videos to demonstrate the utility
of the box-filtered output estimates in tackling inference
problems from SMCs at 1% measurement rate.

Related Work: The related previous works in literature
follow one of the two themes. Some attempt to tackle
inference problems directly from PR measurements without
optimizing for the measurement matrix for the inference
task at hand, some others attempt to optimize measurement
matrix for a particular signal model so as to minimize
reconstruction error.

a) Design of measurement matrix: A closely related
work can be found in [22], wherein a framework is pro-
posed to jointly optimize for a measurement matrix and an
overcomplete sparsifying dictionary for small patches of
images. Results suggest that better reconstruction results
can be obtained using this strategy. However, learning

global dictionaries for entire images is not possible, and
hence the framework is not scalable. Goldstein et al.[23]
designed measurement matrices called ‘STOne’ Transform
which facilitate fast low resolution ‘previews’ just by direct
reconstruction, and the hope is that ‘previews’ are of high
enough quality so that conventional methods for inference
tasks can be applied. Assuming a multi-resolutional signal
model for natural images, Chang et al.[24] proposed an al-
gorithm to obtain measurements which have the maximum
mutual information with natural images.

b) Inference problems from CS videos: A LDS (Lin-
ear Dynamical System) based approach was proposed by
Sankaranarayanan et al.[4] to model CS videos and re-
cover the LDS parameters directly from PR measurements.
However, the method is sensitive to spatial and view
transforms. Calderbank et al.[12] theoretically proved that
one can learn classifiers directly from PR measurements,
and that with high probability the performance of the linear
kernel support vector machine (SVM) classifier operating
on the CS measurements is similar to that of the the
best linear threshold classifier operating on the original
data. A reconstruction-free framework was proposed by
Thirumalai et al.[9] to compute optical flow based on
correlation estimation between two images, directly from
PR measurements. Davenport et al.[25] proposed a mea-
surement domain based correlation filter approach for target
classification. Here, the trained filters are first projected
onto PR patterns to obtain ‘smashed filters’, and then the
PR measurements of the test examples are correlated with
these smashed filters. Recently, Kulkarni et al.[13] and
Lohit et al.[14] extended the ‘smashed filter’ approach
to action recognition and face recognition respectively,
and demonstrated the feasibility and scalability of tackling
difficult inference tasks in computer vision directly from
PR measurements.

2 BACKGROUND

In this section, we provide a brief background on the
probability model for natural images, which we rely on
in the paper, and introduce notations required to set up the
optimization problem to derive measurement matrix and
above referred linear operator.

Probability Model of natural images: There is a rich
body of literature which deals with statistical modeling of
natural images. We refer to some works which are related to
the probability model we use in the paper. Many successful
probability models for wavelet coefficients fall under the
broad umbrella of Gaussian scale mixtures (GSM) [26],
[27]. Typically the coefficient space is partitioned into over-
lapping blocks, and each block is modeled independently
as a GSM, which captures the local dependencies. This
implicitly gives rise to a global model of the wavelet coeffi-
cients. Building on this framework, Lyu et al.[28] proposed
a field of Gaussian scale mixtures (FoGSM) to explicitly
model the subbands of wavelet coefficients, while treating
each subband independently. However, incorporating such
a general model for wavelet coefficient vector makes it
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very difficult to compute the distribution for even simple
functions like a linear function of the wavelet coefficient
vector. Therefore, it is vital to assume a prior model which
can lead to tractable computation of the distribution. It is
well-known that marginal distributions of detailed wavelet
coefficients follow generalized Gaussian distribution [29].
We extend this notion to multi-dimensions and model
the vector of detailed wavelet coefficients by multivariate
generalized Gaussian distribution (MGGD).

To put it formally, let UT ∈ Rn×n be the orthogonal
matrix representing the log2(n) level wavelet transform, so
that x = Uw, where w ∈ Rn is the corresponding wavelet
coefficient vector. Without loss of generality, we assume
that all entries in the first row of UT are 1/

√
n so that the

first entry in w corresponds to
√
n times the mean of all

entries in x. Also we denote the rest n− 1 rows in UT by
UT

2:n. Now we can write w = [
√
nx̄, wd], where x̄ is the

mean of x and wd is the vector of detailed coefficients.
As explained above, the probability distribution of wd
(MGGD) is given by

f(w) = K|Σwd |−0.5exp(−(wTd Σ−1
wd
wd)

β), (1)

where Σwd , commonly known as the scatter matrix, is equal
to rank(Σwd ) Γ((2 + n− 2)/2β)/Γ((2 + n)/2β) times the
covariance matrix of wd, β ∈ (0, 1], and K is a normalizing
constant. For β = 1, we obtain the probability distribution
for the well-known multivariate Gaussian distribution. In
the following we briefly provide a background regarding
the multivariate generalized Gaussian distribution.

A linear transformation of the multivariate generalized
Gaussian random vector is also a multivariate generalized
Gaussian random vector.

Proposition 1: [30] Let u be the a n × 1 multivariate
generalized Gaussian random vector with mean µu ∈ Rn,
and scatter matrix, Σu ∈ Rn×n. Let A be a l×n full rank
matrix. Then the l × 1 random vector, v = Au has the
multivariate generalized Gaussian distribution with mean
µv = Aµu ∈ Rl, and scatter matrix, Σv = AΣuA

T ∈
Rl×l.
If v is a univariate generalized Gaussian random variable,
then the probability of v falling in the range of [δ−µv, δ+
µv], for δ ≥ 0, can be found in terms of lower incomplete
gamma function.

Proposition 2: If v is a univariate generalized Gaussian
random variable with mean µv ∈ R and scatter matrix,
Σv ∈ R, then the probability of v falling in the range of
[−δ + µv, δ + µv], for δ ≥ 0, is given by,

P(|v − µv| ≤ δ) = 2γ

 1

2β
,

 δ

Σv

√√√√Γ( 3
2β )

Γ( 1
2β )

2β
 , (2)

where γ(., .) is the lower incomplete gamma function, and
Γ(.) is the ordinary gamma function.

Preliminaries: Let H ∈ Rn×n be the block Toeplitz
matrix representing the integral operation so that the inte-
gral image, I = Hx ∈ Rn, and hTi for i = 1, .., n be the
rows of H. Hence, Ii equals hTi x. We wish to recover the

approximate integral image, Î from the measured vector
y = φx, just by applying a linear operator L on y, so
that Î = Ly. For reasons which will be apparent soon,
we assume L = H(φd)T , where φd ∈ Rm×n such that
rank(φd) = rank(φ). We call φd as the dual of φ. Thus
by construction L ∈ Rn×m. The value at location i in the
approximate integral image is given by Îi = hTi (φd)Tφx.
The distortion in integral image at location i is given by
di = Îi−Ii = hTi ((φd)Tφx−x). Noting Q = (φd)Tφ, and
n×n identity matrix by I, the distortions can be compactly
written as di = hTi (Q − I)x. We call d = [d1, ..., dn] as
distortion vector.

3 OPTIMIZATION PROBLEM

Our aim is to search for a measurement matrix φ of
minimum rank such that distortions, di are within allow-
able limits for all i, jointly, with high probability. Q by
construction is the product of two matrices of identical
ranks, φ and (φd)T . Hence, we have the relation, rank(Q)
= rank(φ). Inspired by the phase-lifting technique used in
[31] and [32], instead of minimizing the rank of φ, we
minimize the rank of Q. Now, we can formally state the
optimization problem as follows.

minimize
Q

rank(Q)

s.t P(|d1| ≤ δ1, .., |di| ≤ δi.., |dn| ≤ δn) ≥ 1− ε,
(3)

where δi ≥ 0 denotes the allowable limit of distortion
at location i of integral image, and 0 < ε < 1. Once
Q∗ is found, we show later in the section that the SVD
decomposition of Q∗ allows us to write Q∗ as a product
of two matrices of identical ranks, thus yielding both the
measurement matrix, φ∗ and the desired linear operator,
L∗. The constraint in (3) is a probabilistic one. Hence to
compute it, one needs to assume a statistical prior model
for x. Using the model in 1, and its properties given in
proposition (1) and (2), we arrive at a solvable optimization
problem.

Computation of probabilistic constraint in (3): Sub-
stituting for x, we can write the distortion at location i as
di = hTi (Q − I)Uw. We let all the entries in the first
row of φ and φd to be equal to 1/

√
n, so that one of

the m measurements is exactly equal to
√
nx̄. Further,

we denote the rest m − 1 rows of the two matrices by
φ2:m and φd2:m. Now, if we restrict φ2:m and φd2:m to be
respectively equal to CUT

2:n and DUT
2:n for some C, D

in Rm−1×n−1, then from basic linear algebra we can show
that di = hTi (P − I)UT

2:nwd, where P = (φd2:m)Tφ2:m.
It is easy to see that Q = P + 1

nO, and rank(Q) =
rank(P) + 1, where O is the matrix with all its entries
equal to unity (see Appendix A for details). Hence we
can replace the objective function in (3) by rank(P). Rank
minimization is a non-convex problem. Hence we relax the
objective function to nuclear norm, as is done typically. To
compute the constraint in (3), one needs to first compute
the joint probability of d = [d1, .., dn], and then compute
a n dimensional definite integral. Now that di’s are linear
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combinations of wd, it follows from proposition 1, that d
also has a multivariate generalized Gaussian distribution.
However, no closed form for the definite integral is known.
Hence, we relax the constraint by decoupling it into n
independent constraints, each enforcing the constraint that
the distortion at a specific location is to be within allowable
limits with high probability, independent of the distortions
at other locations. The optimization with relaxed constraints
is thus given by

minimize
P

‖P‖∗
s.t P(|di| ≤ δi) ≥ 1− ε, i = 1, .., n.

(4)

Now, di = hTi (P − I)UT
2:nwd, is a linear combination of

the entries of wd. From the proposition 2, di has a one-
dimensional generalized Gaussian distribution with zero
mean and scatter parameter,

∥∥∥Σ1/2
wd UT

2:n(P− I)Thi

∥∥∥, and
the probability in equation 4 can be explicitly written as
follows.

P(|di| ≤ δi)

= 2γ

 1

2β
,

 δi∥∥∥Σ1/2
wd

UT
2:nPThi −Σ

1/2
wd

UT
2:nhi

∥∥∥
2

√√√√Γ( 3
2β )

Γ( 1
2β )


2β .

(5)

The optimization problem now can be rewritten as

minimize
P

‖P‖∗ s.t

2γ

 1

2β
,

 δi∥∥∥Σ1/2
wd UT

2:nPThi −Σ
1/2
wd UT

2:nhi

∥∥∥
2

√√√√Γ( 3
2β )

Γ( 1
2β )

2β


≥ 1− ε .

We compactly write Σ
1/2
wd UT

2:nPThi as Ai(P),

Σ
1/2
wd UT

2:nhi as bi and δi

(γ−1( 1
2β ,

1−ε
2 ))

1
2β

√
Γ( 3

2β )

Γ( 1
2β )

as

∆i. Plugging above in equation (5), and rearranging terms,
we have

minimize
P

‖P‖∗
s.t ‖Ai(P)− bi‖2 ≤ ∆i i = 1, .., n.

(6)

We can rewrite the problem in conic form as below.

(P1) minimize
P

‖P‖∗ s.t[
bi −Ai(P)
∆i

]
∈ Ki, i = 1, .., n,

(7)

where Ki is a second order cone Ki = {(xi, ti) ∈
Rn+1 : ‖xi‖ ≤ ti}. Let b = [b1, .., bn], and
A(P) = [A1(P), ..,An(P)]. Let A∗ denote the adjoint of
the linear operator A. It is easy to recognize that the
optimization above is a convex problem, since nuclear norm
is convex and the constraints enforce finite bounds on the
norms of affine functions of the decision variable, P and
hence are also convex. Even though the constraints are
second-order cone constraints, the standard second order
conic programming methods cannot be used to solve (P1)

since nuclear norm is non-smooth. The nuclear norm is
smoothened by the addition of a square of Forbenius norm
of the matrix, and is replaced by τ ‖P‖∗+ 1

2 ‖P‖
2
F , where

τ > 0. The optimization problem with the smoothened
objective function is given in 8.

(P2) minimize
P

τ ‖P‖∗ +
1

2
‖P‖2F

s.t
[
bi −Ai(P)
∆i

]
∈ Ki, i = 1, .., n.

(8)

Recently, many algorithms [33], [34] have been developed
to tackle nuclear norm minimization problem of this form
in the context of matrix completion. We use SVT (singular
value thresholding) algorithm [34] to solve (P2).

SVT iteration to solve (P2): Here, we first briefly
describe the SVT algorithm for smoothened nuclear norm
minimization with general convex constraints, and later we
show how we adapt the same to our problem P2 which
has n second-order constraints. Let the smoothened nuclear
norm with general convex constraints, be given as below.

minimize
P

τ ‖P‖∗ +
1

2
‖P‖2F

s.t fi(P) ≤ 0, i = 1, .., n,
(9)

where fi(P) ≤ 0, i = 1, .., n denote the n convex
constraints. Let F(P) = [f1(P), .., fn(P)]. The SVT
algorithm for the 9 with the modified objective function
is given as below.

Pk = arg min
P

τ ‖P‖∗ + 1
2 ‖P‖

2
F + 〈zk−1,F(P)〉

zi
k = Pi

(
zi
k−1 + ηkfi(P

k)
)
, i = 1, .., n

}
(10)

where zk is a short form for [z1
k, .., zn

k], and Pi(q) de-
notes the projection of q onto the convex set defined by the
constraint fi(P) ≤ 0. Let zi

k = [yi
k, ski ], so that the vector

yi
k denotes the first n elements of zi

k and ski denotes the
last element of zi

k. Let yk be a short form for [y1
k, ..,yn

k],
and sk is a short form for [sk1 , .., s

k
n]. To obtain a explicit

form of the update equations in 10 for our problem, P1,
let us consider the first equation of the same. F(P) for
P1 is given by [b1−A1(P),∆1, .., bn−An(P),∆n]T . We
substitute for F(P), and after removal of the terms not
involving P, we have

Pk = arg min
P

τ ‖P‖∗ +
1

2
‖P‖2F + 〈yk−1,b−A(P)〉.

(11)
Equation 11 can be rewritten as below.

Pk = arg min
P

τ ‖P‖∗ +
1

2

∥∥P−A∗(yk−1)
∥∥2

F

−1

2

∥∥A∗(yk−1)
∥∥2

F
+ 〈P,A∗(yk−1)〉

+〈yk−1,b〉 − 〈yk−1,A(P)〉.

Removing the terms not involving P and noting that
〈P,A∗(yk−1)〉 = 〈yk−1,A(P)〉, we have the following.

Pk = arg min
P

τ ‖P‖∗ +
1

2

∥∥P−A∗(yk−1)
∥∥2

F
. (12)



5

Before we write down the solution to equation 12, we first
define Dτ , the singular value shrinkage operator. Consider
the SVD of a matrix X, given by X = WΣVT . Then for
τ ≥ 0, the singular value shrinkage operator, Dτ is given
by Dτ (X) = WDτ (Σ)VT ,Dτ (Σ) = diag({(σi − τ)+}),
where t+ = max(0,t). The solution to equation 12 is given
by Pk = Dτ (A∗(yk−1)). Now, it remains to calculate
A∗(yk−1). We achieve it according to the following. Con-
sider 〈A∗(yk−1),P〉.

〈P,A∗(yk−1)〉

= 〈A(P),yk−1〉 =

n∑
i=1

〈Ai(P),yi
k−1〉

=

n∑
i=1

〈P,A∗i (yi
k−1)〉 = 〈P,

n∑
i=1

A∗i (yi
k−1)〉

Hence, we have A∗(yk−1) =
∑n
i=1A∗i (yi

k−1). Thus, the
first equation of SVT iteration for our problem is given by

Pk = Dτ

(
n∑
i=1

A∗i (yi
k−1)

)
. (13)

Using basic linear algebra, it can be shown that
A∗i (yi

k−1) = U2:n(Σ
1/2
wd )Tyi

k−1hTi (see Appendix B for
details).

We now provide the projection onto the convex cone Ki.
The projection operator, PKi as derived in [35] is given as
follows.

PKi : (x, t) 7→
(x, t), ‖x‖ ≤ t,
‖x‖+t
2‖x‖ (x, ‖x‖), −‖x‖ ≤ t ≤ ‖x‖ ,

(0, 0), t ≤ −‖x‖ .
(14)

To solve (P2), starting with
[

y0
i

s0
i

]
= 0 for all i =

1, ..n, the kth SVT iteration is given by (15).

Pk = Dτ
(

n∑
i=1

U2:n(Σ
1/2
wd )Tyi

k−1hTi

)
[

yki
ski

]
= PKi

([
yk−1
i

sk−1
i

]
+ ηk

[
bi −Ai(Pk)
−∆i

])
,


(15)

where, A∗i are the adjoints of linear operators Ai. For the
iterations (15) to converge, we need to choose the step sizes,
ηk ≤ 2

‖A‖22
, where ‖A‖2 is the spectral norm of the linear

transformation A [34].
Once the solution P∗ is found, using the relation noted

earlier in the section, we have Q∗ = P∗ + 1
nO. Having

obtained Q∗, the task now is to express it into a product of
two matrices of identical ranks. This is done almost trivially
as follows. Noting the singular value decomposition of Q∗

as Q∗ = WMΣMVT
M , where ΣM = diag{λ1, .., λM}

denote the diagonal matrix with the non-zero singular
values arranged along its diagonal, and WM and VT

M are
the matrices whose columns are the left and right singular
vectors respectively. We can choose φ∗ = Σ

1/2
M VT

M , so
that ((φd)∗)T = WMΣ

1/2
M and rank(φ∗) = rank((φd)∗) =

rank(Q∗). We, henceforth refer to φ∗ as ReFInE φ, and

the corresponding measurements, y = φ∗x as ReFInE
measurements. The desired linear operator L∗ is given
by HWMΣ

1/2
M . By construction, the approximate integral

image Î is given by Î = L∗y = (HWMΣ
1/2
M )y.

Computational Complexity: Since the length of the
image x is n, the number of entries in P is n2. Hence,
the dimension of the optimization problem P2 is n2. This
means that if we are to optimize for a measurement matrix
to operate on an image of size, 256×256, the dimension of
the optimization problem would be 232! Optimizing over a
large number of variables is computationally expensive, if
not impractical. Hence we propose the following subopti-
mal solution to obtain the measurement matrix. We divide
the image into non-overlapping blocks of fixed size, and
sense each block using a measurement matrix, optimized
for this fixed size, independently of other blocks. Let the
image, x be divided into B blocks, x1, x2, .., xB , each of
a fixed size, f × f , and φf ∈ Rm×f

2

be the measurement
matrix optimized for images of size f × f , and (φdf )T

be the corresponding dual matrix. Then the ‘ReFInE’
measurements, y are given by the following,

y =


y1

y2

...
yB

 =


φf 0 · · · 0
0 φf · · · 0
...

...
. . .

...
0 0 · · · φf



x1

x2

...
xB

 . (16)

Once the measurements, y are obtained, the integral image,
Î is given by

Î = H


(φdf )T 0 · · · 0

0 (φdf )T · · · 0
...

...
. . .

...
0 0 · · · (φdf )T



y1

y2

...
yB

 . (17)

4 EXPERIMENTS

Before we can conduct experiments to evaluate our
framework, we first need to estimate the parameters of
the probability model in 1. Estimating parameters of the
probability model and optimizing measurement matrices for
any arbitrary large sized image blocks is not practical since
the former task requires an enormous amount of image data
and the latter requires prohibitive amount of memory and
computational resources. Hence, we fix the block size to
be 32 × 32 images. The scatter matrix Σwd is a scalar
multiple of the covariance matrix of wd. Hence it suffices
to compute the covariance matrix. To this end, we first
downsample all the 5011 training images in PASCAL VOC
2007 dataset [36] to a size of 32 × 32, so that n = 1024
and then obtain the level 7 Daubechies wavelet coefficient
vectors. We compute the sample covariance matrix of thus
obtained wavelet coefficient data. For various values of β,
we evaluate the χ2 distance between the histograms of the
individual wavelet coefficients and their respective theo-
retical marginal distributions with the variances computed
above. We found for β = 0.68, the distance computed
above is minimum.
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Computing measurement matrix: To obtain a mea-
surement matrix, we need to input a desired distortion
vector δ to the optimization problem in (P2). The desired
distortion vector is computed according to the following.
We first perform principal component analysis (PCA) on
the downsampled 5011 training images in the PASCAL
VOC 2007 dataset [36]. We use only the top 10 PCA
components as φ to ‘sense’ these images. We obtain the
desired distortion vector by first assuming φd = φ and
calculating distortions, |dji | at each location for all training
images, j = 1, .., 5011. Now, the entry in location i of the
desired δ is given by the minimum value α, so that 95%
of the values, |dji |, j = 1, .., 5011 are less than α. We use
ε = 0.95 and solve (P2) to obtain P∗, and hence also Q∗.
The rank of ReFInE φ is simply the rank of Q∗.

Estimation of integral images: We show that good
quality estimates of integral images can be obtained using
our framework. To this end, we first construct ReFInE
measurement matrices of various ranks, M . We achieve
this by considering the SVD of Q∗ obtained above. For a
particular value of M , the ReFInE φ is calculated accord-
ing to φM = Σ

1/2
M VT

M , where ΣM = diag{λ1, .., λM} is
a diagonal matrix with M largest singular values arranged
along the diagonal and VT

M denote the corresponding rows
in VT . Its dual, φd, is calculated similarly. For each
particular measurement rate, determined by the value of M ,
the integral image estimates are recovered from M ReFInE
measurements for all the 4952 test images in the PASCAL
VOC 2007 dataset [36]. Similarly integral image estimates
are recovered from random Gaussian measurements by
first performing non-linear iterative reconstruction using
the CoSamP algorithm [8] and then applying the integral
operation on the reconstructed images. This pipeline is used
as baseline to compare integral estimates, and henceforth is
referred to as ‘RG-CoSamP’. We then measure the recov-
ered signal-to-noise ratio (RSNR) via 20 log10

(
‖Î‖

F

‖Î−I‖
F

)
.

The average RSNR for recovered integral image estimates
as well as the time taken to obtain integral images are
tabulated in the table 1. Our framework outperforms RG-
CoSamP in terms of both recovery signal-to-noise ratio and
time taken to estimate the integral image, at all measure-
ment rates. This shows that ReFInE φ, the measurement
matrices designed by our framework, facilitate faster and
more accurate recovery of integral image estimates than the
universal matrices. The average time taken to obtain integral
image estimates in our framework is about 0.003s, which
amounts to a real-time speed of 300 FPS. Further, we
randomly select four images (‘Two Men’, ‘Plane’, ‘Train’
and ‘Room’) from the test set (shown in figure 1(a), 1(b),
1(c), 1(d)) and present qualitative and quantitative results
for individual images. Image-wise RSNR v/s measurement
rate plots are shown in figure 2. It is very clear that for all
the four images, our framework clearly outperforms RG-
CoSamP in terms of RSNR, at all measurement rates.

Estimation of box-filtered outputs: It is well known
that box-filtered outputs of any size can efficiently com-
puted using integral images [15]. To show the capability

of our framework in recovering good quality box-filtered
output estimates, we conduct the following experiment. For
box filters of sizes 3× 3, 5× 5 and 7× 7, we compute the
estimates of filtered outputs for the four images using their
respective recovered integral image estimates. RSNR v/s
measurement rate plots for different filter sizes are shown
in figure 3. It is evident that even for a remarkably low
measurement rate of 1% , we obtain high RSNR box-
filtered outputs. For a fixed measurement rate, expectedly
the RSNR increases with the size of the filter. This shows
the structures which are more global in nature are captured
better. This is particularly true in the case of ‘Plane’ image.
The high RSNR for this image hints at the absence of fine
structures and homogeneous background. Further, for the
‘Two Men’ Image, we also compare the heat maps of the
exact box-filtered outputs with the estimated ones. We fix
the measurement rate to 1%. For filter sizes 3×3 and 7×7,
the exact box-filtered outputs are computed and compared
with the box-filtered output estimates obtained using our
framework, and RG-CoSamP as well. The heat map visu-
alizations of the outputs are shown in figure 4. It is clear
that greater quality box-filtered output estimates can be
recovered using our framework and the recovered outputs
retain the information regarding medium-sized structures in
the images, while in the case of RG-CoSamP, the output is
all noisy and does not give us any information.

5 TRACKING APPLICATION

In this section, we show the utility of the framework
in practical applications. In particular, we show tracking
results on 50 challenging videos used in benchmark com-
parison of tracking algorithms [37]. We emphasize that our
aim is not to obtain state-of-the-art tracking results but to
show that integral image estimates can be used to obtain
robust tracking results at low measurement rates. To this
end, we conduct two sets of tracking experiments, one
with original resolution videos and one with high definition
videos.

Tracking with original resolution videos: We conduct
tracking experiments on original resolution videos at three
different measurement rates, viz 1.28%, 1%, and 0.49%.
In each case, we use the measurement matrix obtained for
block size of 32 × 32, and obtain ReFInE measurements
for each frame using the φ∗ obtained as above. Once,
the measurements are obtained, our framework recovers
integral image estimates from these measurements in real
time. The estimates are subsequently fed into the best
performing Haar-feature based tracking algorithm, Struck
[38] to obtain the tracking results. Henceforth, we term
this tracking pipeline as ReFInE+Struck. To evaluate our
tracking results, we use the standard criterion of precision
curve as suggested by [37]. To obtain the precision curve,
we plot the precision scores against a range of thresholds.
A frame contributes to the precision score for a particular
threshold, α if the distance between the ground truth
location of the target and estimated location by the tracker
is less than the threshold, α. Precision score for given
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Method ReFInE RG-CoSamP ReFInE RG-CoSamP ReFInE RG-CoSamP
M (measurement ratio) 20 (0.005) 20 (0.005) 40 (0.01) 40 (0.01) 60 (0.015) 60 (0.015)
Time in s 0.0034 0.38 0.0036 0.58 0.0031 0.97
RSNR in dB 38.95 -16.76 38.96 -11.22 38.96 -10.9

TABLE 1
Comparison of average RSNR and time for recovered integral image estimates obtained using our method with
RG-CoSamP. Our framework outperforms RG-CoSamP in terms of both recovery signal-to-noise ratio and time

taken to estimate the integral image, at all measurement rates.

(a) (b) (c) (d)

Fig. 1. (Four images (L-R: ‘Two Men’, ‘Plane’, ‘Train’ and ‘Room’) are randomly chosen for presenting qualitative
and quantitative results.
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Fig. 2. The figure shows variation of image-wise RSNR for recovered integral image estimates for the four
images. It is very clear that for all the four images, our framework outperforms ‘RG-CoSamP’ in terms of RSNR,
at all measurement rates.
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Fig. 3. The figure shows the variation of RSNR for the recovered box-filtered outputs using ReFInE with measurement rate.
It is evident that even for 1% measurement rate, we obtain high RSNR box-filtered outputs. For a fixed measurement rate, the
RSNR increases with the size of the filter. This shows the structures global in nature are captured better. This is particularly
true in the case of ‘Plane’ image. The high RSNR for this image hints at the absence of fine structures and homogeneous
background.
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Fig. 4. Heat maps for box-filtered outputs for the ‘Two men’ image. Left to right: Exact output, ReFInE (m/n = 0.01),
and RG-CosamP (m/n = 0.01). It is clear that greater quality box-filtered output estimates can be recovered from ReFInE
measurements and the recovered outputs retain the information regarding medium-sized structures in the images, while in
case of RG-CoSamP, the output is all noisy and does not give us any information.
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threshold is calculated as the percentage of frames which
contribute to the precision score. When precision scores
are required to be compared with other trackers at one
particular threshold, generally threshold is chosen to be
equal to 20 pixels [37].

Precision curve: The precision curves for our framework
at the three different measurement rates are plotted against
a wide range of location error thresholds, and are compared
with the same for other trackers, Oracle Struck [38], and
various other trackers, TLD [20], MIL [19], CSK [39], and
FCT [40] in figure 5. It is to be noted all the trackers
used for comparison utilize full-blown images for tracking
and hence operate at 100% measurement rate. As can be
seen clearly, ‘ReFInE+Struck’ at 1.28% performs better
than other trackers, MIL, CSK, TLD, and FCT and only
a few percentage points worse than Oracle Struck for
all thresholds. In particular, the mean precision over all
50 sequences in the dataset [37] for the threshold of 20
pixels is obtained for ‘ReFInE+Struck’ at three different
measurement rates and is compared with other trackers in
table 2. We obtain a precision of 59.26% at a measurement
of 1.28%, which is only a few percentage points less than
precision of 65.5% using Oracle Struck and 60.8% using
TLD. Even at an extremely low measurement rate of 0.49%,
we obtain mean precision of 45.78% which is competitive
when compared to other trackers, MIL, and FCT which op-
erate at 100% measurement rate. This clearly suggests that
the small number of well-tailored measurements obtained
using our framework retain enough information regarding
integral images and hence also the Haar-like features which
play a critical role in achieving tracking with high precision.

Frame rate: Even though, our framework uses Struck
tracker, the frame rates at which ‘ReFInE+Struck’ operates
are potentially less than the frame rate that can be obtained
with Oracle Struck, and can even be different at different
measurement rates. This is due to the fact that once the
measurements are obtained for a particular frame, we first
have to obtain an intermediate reconstructed frame before
applying the integral operation. However, in the case of
Oracle Struck, the integral operation is applied directly on
the measured frame. The frame rate for ‘Our+Struck’ at
different measurement rates are compared with the frame
rates for other trackers in table 2. However, as can be
seen, the preprocessing operation to obtain the intermediate
reconstructed frame barely affects the speed of tracking
since the preprocessing step, being multiplication of small-
sized matrices can be efficiently at nearly 1000 frames per
second.

Experiments with sequence attributes: Each video
sequence in the benchmark dataset is annotated with a
set of attributes, indicating the various challenges the
video sequence offers in tracking. We plot precision per-
centages against the location error threshold for each of
these 10 different kinds of attributes. Figure 6 shows the
corresponding plots for attributes, ‘Illumination Variation’,
‘Background Clutter’, ‘Occlusion’, and ‘Scale Variation’.
In the case of ‘Illumination Variation’ and ‘Occlusion’
‘Our+Struck’ at measurement rate of 1.28% performs better
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Fig. 5. ‘ReFInE+Struck’ at a measurement rate of 1.28%
performs better than other trackers, MIL, CSK, TLD, and
FCT and only a few percentage points worse than Oracle
Struck for all thresholds. Even at a measurement rate of 1%,
‘ReFInE+Struck’ performs nearly as well as TLD and CSK
trackers which operate at 100% measurement rate.

Tracker Mean Precision Mean FPS
ReFInE at MR = 1.28% + Struck 59.26 19.61
ReFInE at MR = 1% + Struck 52.47 19.61
ReFInE at MR = 0.49% + Struck 45.78 19.62
Oracle Struck [38] 65.5 20
TLD [20] 60.8 28
CSK [39] 54.11 362
MIL [19] 47.5 38
FCT [40] 42.37 34.92

TABLE 2
Mean precision percentage for 20 pixels error and mean

frames per second for various state-of-the-art trackers are
compared with our framework at different measurement
rates. The precision percentages for our framework are
stable even at extremely low measurement rates, and
compare favorably with other trackers which operate at
100% measurement rate, i.e utilize all the pixels in the

frames.

than TLD, CSK, MIL and FCT, whereas in the case of the
‘Background Clutter’ and ‘Scale Variation’ attributes, TLD
performs slightly better than ‘Our+Struck’ at measurement
rate of 1.28%.

Figure 7 shows the corresponding plots for attributes,
‘Deformation’, ‘Fast Motion’, ‘Motion Blur’, and ‘Low
Resolution’. In the cases of ‘Deformation’, ‘Fast Motion’
and ‘Motion Blur’, ‘ReFInE+Struck’ at measurement rate
of 1.28% performs better than TLD, CSK, MIL and FCT,
whereas in the case of ‘Low Resolution’, TLD performs
better than ‘ReFInE+Struck’.

Figure 8 shows the corresponding plots for attributes,
‘In the Plane rotation’, ‘Out of View’, and ‘Out of Plane
rotation’.

Tracking with high resolution videos: Tracking using
high-resolution videos can potentially lead to improvement
in performance due to availability of fine-grained informa-
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Fig. 6. Precision plots for four different attributes. In the case of ‘Illumination Variation’ and ‘Occlusion’ ‘ReFInE+Struck’ at
measurement rate of 1.28% performs better than TLD, CSK, MIL and FCT, whereas in the case of the ‘Background Clutter’
and ‘Scale Variation’ attributes, TLD performs slightly better than ‘ReFInE+Struck’ at measurement rate of 1.28%.

tion regarding the scene. However, in many applications,
the deployment of high-resolution sensors is severely lim-
ited by the lack of storage capacity. In such scenarios, it
will be interesting to see if the small number of ReFInE
measurements of high-resolution videos can yield better
tracking performance than the full-blown low-resolution
videos. To conduct tracking experiments on high resolution
videos, we first employ a deep convolutional network
based image super resolution (SR) algorithm, SRCNN,
[41] to obtain high resolution frames of the 50 videos
considered earlier in the section. The aspect ratio for all
frames is maintained, and the upscaling factor for image
super resolution is calculated such that the resolution of
the longer dimension in the higher resolution frame is at
least 1000 pixels. We found that upscale factors varies
between 2 and 8 for various videos in the dataset. Once the
high resolution videos are obtained, we proceed to obtain
ReFInE measurements as before. We conduct tracking
experiments at four different measurement rate (1%, 0.49%,
0.29%, 0.2%). Note that these different measurement rates
are with respect to (wrt) the high-resolution frames, and

the measurement rate wrt original resolution, which we
call effective measurement rate (EMR), is given by the
ratio of the number of ReFInE measurements per frame
to the number of pixels in a frame of original resolution
video. Here, the tracking algorithm, Struck which we used
for original resolution videos does not scale well in terms
of computational complexity. For higher resolution videos,
where the search space is much larger, we found that
Struck is too slow for real-time application. Instead, we
use a faster Haar feature based tracking algorithm, FCT
[40] algorithm. Henceforth, we dub this tracking pipeline
as SR+ReFInE+FCT. Once tracking results are obtained
for the high resolution videos are obtained, we normalize
the coordinates so as to obtain the tracking outputs with
respect to original resolution videos. The precision score is
calculated as before. The mean precision percentage for 20
pixels error and mean frames per second for ‘SR + ReFIne
+ FCT’ at various measurement rates are given in table
3 and are compared for the same for ‘Oracle FCT’ which
operates for full-blown original resolution videos. It is clear
that we obtain a significant boost in tracking accuracy
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Fig. 7. Precision plots for four different attributes. In the cases of ‘Deformation’, ‘Fast Motion’ and ‘Motion Blur’,
‘ReFInE+Struck’ at measurement rate of 1.28% performs better than TLD, CSK, MIL and FCT, whereas in the case of
‘Low Resolution’, TLD performs better than ‘ReFInE+Struck’.
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Fig. 8. Precision plots for three different attributes. In the cases of ‘In the plane rotation’, and ‘Out of plane rotation’,
‘ReFInE+Struck’ at measurement rate of 1.28% performs better than TLD, CSK, MIL and FCT, whereas in the case of ‘Out
of View’, TLD performs better than ‘ReFInE+Struck’.

for high resolution videos. At measurement rate of 1%
(EMR of 8.16%), we obtain a mean precision percentage of
54.83, which is 12.46 percentage points more than that for

‘Oracle FCT’. Even at a measurement rate of 0.2% ((EMR
of 1.63%)), the precision percentage of 45.79, which is
about 3.42 percentage points more than that for ‘Oracle
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Tracker Mean Precision Mean FPS
SR + ReFInE at EMR = 8.16% + FCT 54.83 19.61
SR + ReFInE at EMR = 4% + FCT 53.03 19.61
SR + ReFInE at EMR = 2.37% + FCT 50.9 19.62
SR + ReFInE at EMR = 1.63% + FCT 45.79 19.62
Oracle FCT [40] 42.37 34.92

TABLE 3
Mean precision percentage for 20 pixels error and mean
frames per second for ‘SR + ReFIne + FCT’ at various

measurement rates are compared with ‘Oracle FCT’. Even
at extremely low measurement rates, the precision

percentages for ‘SR + ReFIne + FCT’ are better that for
‘Oracle FCT’ which operates on full-blown original resolution

images.

FCT’. However, the more accurate precision comes at the
cost of frame rate. Since the search space is much larger
for high resolution videos, the speed of tracking for high
resolution videos, is only about 20 FPS, while ‘Oracle FCT’
operates at 34.92 FPS. But 20 FPS suffices for near real-
time implementations.

6 CONCLUSIONS

In this paper, we qualitatively and quantitatively showed
that it is possible obtain high quality estimates of in-
tegral images and box-filtered outputs directly from a
small number of specially designed spatially multiplexed
measurements called ReFInE measurements. To show the
practical applicability of the integral image estimates, we
presented impressive reconstruction-free tracking results on
challenging videos at an extremely low measurement rate
of 1%. We also showed that with only a small number of
ReFInE measurements on high-resolution videos, which is
only a fraction (2-8%) of the size of the original resolution,
one can obtain significantly better object tracking results
than using full blown original resolution videos. From a
philosophical point of view, this points to the possibility
of attaining greater performance on other computer vision
inference tasks from a small number of carefully tailored
spatially multiplexed measurements of high-resolution im-
agery rather than full-blown low resolution imagery.

APPENDIX A
DERIVATION: RANK(P) = RANK(Q) - 1

By construction we have (φd)T = [1|(φd)T2:m] =
[1|(DUT

2:n)T ]. The column of all ones in (φd)T is or-
thogonal to remaining m − 1 columns. Hence, we have
rank(φd2:m) = rank(φd) − 1 = rank(Q) − 1. Similarly,
we have rank(φ2:m) = rank(φ)−1 = rank(Q)−1. Since,
P is the product of equally ranked matrices, (φd)T2:m and
φ, it follows that rank(P) = rank(φd2:m) = rank(Q)−1.

APPENDIX B
CALCULATION OF A∗

i (yi
k−1)

For brevity, we drop the superscript, k − 1. Let
Σ

1/2
wd UT

2:n = ΣU . Consider the following equation.

〈A(P),y〉 =

n∑
i=1

〈P,A∗i (yi)〉. (18)

The left hand side can be written as

[y1, ...,yn][(A1(P))T , ..., (An(P))T ]T (19)

= [y1, ...,yn][hT1 PTΣT
U , ..., h

T
nPTΣT

U ]T (20)

=

n∑
i=1

yiΣUPThi (21)

=

n∑
i=1

〈P,ΣT
Uyih

T
i 〉. (22)

Comparing the equations 18 and 22, we have A∗i (yi) =
ΣT
Uyih

T
i .
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