
1

What makes Federer look so elegant?
Kuldeep Kulkarni and Vinay Venkataraman

Abstract—Everyday we come across thousands of sportsmen in action. Each of them have their own style of play and make varied
impressions on the viewers. Despite this expected variability in the impression they make, there are certain inherent qualities of their play
like their poise, the economy of their movement, flow of their movement etc. which make some of them more watchable to most of us.
For example in tennis, Federer is widely regarded as the one of the most elegant players in the history. In cricket, the upright stance, the
perfect balance, the precision in shot-making are some of the qualities which makes Sachin Tendulkar look more ’elegant’or ’better’ than
others. In this project, we wish to the measure the ‘watchability’ of a player by quantifying the quality of the various movements of a player.
In particular, we concentrate mainly on the movements of a batsman in cricket and provide principled ways to measure the ‘watchability’
of a batsman in terms of the three typical movements of a batsman, viz stance, back-lift and follow-through. ‘Watchability’ scores can be
very useful for a qualitative video summarization of sports videos, analyzing the change in style of a single players play over the course
of a long career, or even to determine the amount of influence of one players style on another.
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1 INTRODUCTION

Every day we watch various sportsmen in action on
television. Each one of us have our own likings and
hence our own favourite sportsmen which we wish
to watch over and over again. However, despite this
expected variability in our likings, there is usually uni-
versal agreement amongst the followers of a certain sport
that a certain player is more ‘watchable’ than others or
player A plays similar to player B. For example, Don
Bradman, the greatest cricketer the world has seen, saw
himself in a modern cricketer, Sachin Tendulkar and
acknowledged that he bats much the same way that
he used to bat, even though they belonged to totally
different generations. Hence in this project, we take a
baby step towards using computer vision techniques to
automatically extract those qualities which make a cer-
tain player look more graceful or ungainly than others,
as the case may be and quantify such qualities. In short,
we call the set of these qualities as ‘watchability’ of a
batsman/shot. Due to time constraints, we concentrate
only on cricket clips, and in particular on the quality of
shot the batsman plays.
One of the challenges in assessing the quality of a cricket
shot is that there are various kinds of shots a batsman
can play. As shown in the figure 1, all are played very
differently from each other. For example, a straight drive
is played with the full face of the bat facing camera so
that the ball is directed back at angle of about 20 degrees
to the direction of the delivery of the ball but a sweep
shot is played by resting one knee on the ground, and
directing the ball at an angle of around 135 degrees to the
direction of the delivery of the ball. Hence, it is essential
that strategy to measure the ‘watchability’ of a shot is
based on the type of the shot played rather being a
universal one. Hence, the naturally the first step in the
pipeline is to identify the type of shot that is played in

the test clip. Once, the type of shot is recognized, the
quality of movement in the clip is scored based on the
type of shot in the clip. The ‘watchability’ of a batsman
is determined by how harmoniously the different parts
of the body move with respect to each other. Hence, it is
essential to understand the dynamics of all the important
moving parts of the body, like hands, elbow, head,
legs etc. with respect to each other. The ideal way to
learn such dynamics is by using joint locations in every
frame. However, despite significant progress, extracting
joint angle locations from images remains a notoriously
hard problem, and most current solutions lead to noisy
outputs. To overcome this we use poselets [1] which are
body part detectors, and are tightly clustered in both
appearance space and configuration space. We obtain
poselet activation vector [2] which implicitly encodes the
joint locations for each frame, based on which we obtain
a feature vector for the clip. This feature vector is used
to determine the ‘watchability’ score of the shot played
in the clip.
Related Work:
There has not been much previous work in literature
related to movement quality assessment from videos.
Since, action recognition is an important step in the
pipeline explained in introduction, we briefly describe
some of well-known action recognition methods below.
a) Action Recognition: The approaches in human ac-
tivity recognition can be categorized based on the low
level features. Most successful representations of human
activity are based on features like optical flow, point tra-
jectories, background subtracted blobs and shape, filter
responses, etc. Mori et al.[3] and Cheung et al.[4] used
geometric model based and shape based representations
to recognize actions. Bobick and Davis [5] represented
actions using 2D motion energy and motion history
images from a sequence of human silhouettes. Laptev [6]
extracted local interest points from a 3-dimensional spa-
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tiotemporal volume, leading to a concise representation
of a video. For a detailed survey of action recognition,
the readers are referred to [7].

2 DATA COLLECTION
As mentioned earlier, our goal of this project was to be
able to assess the quality of cricket shots from Youtube
videos. Our preliminary goal was to be able to recog-
nize different cricket shots. For these experiments, we
have collected a dataset with six action classes (cricket
shots) - Straight Drive, Cover Drive, Cut, Flick, Pull and
Sweep. Examples of these classes were collected from
four batsmen (left handed) so that we have 10 examples
for each class. The exemplar videos of each class is shown
in Figure 1. The videos collected from Youtube.com were
edited such that the start of the video is when bowler is
about to bowl (throw) the ball and the end is marked just
after the shot is completed. This was done consistently
across shots and batsmen.

3 CRICKET SHOT RECOGNITION
Due to reasons explained in section 1, we believe that
to quantify the quality of movement, having an inde-
pendent computational framework for each type of shot
is necessary. Hence, recognizing a cricket shot is a very
important step for quantification of quality of cricket
shots. The first approach we take is to use bat trajectory
for recognizing shots, as it is clear that the trajectory of
the bat is a signature of a shot.

3.1 Shot Recognition using Bat
For a batsmen to achieve a cricket shot, the batsmen
must position himself in a particular way and the bat
should traverse on a particular trajectory. This makes the
position of the bat to be unique for a shot at the time of
impact with the ball. As our first approach, we propose
to use a semi-supervised bat segmentation approach for
shot recognition. The difference in position of the bat
for two different shots are shown in Figure 2. The video
frames are selected when the bat is about to hit the ball.
We can clearly see that the shape of the bat for these shots
are unique, and our aim is to extract features which are
descriptive of these shapes. To get the segments of the
video frame, we have used the segmentation algorithm
proposed by Liu et al. [8].

3.1.1 Shape Distributions of Bat
From Figure 2, it is clear that the shape of the bat
is unique for a cricket shot at the point of impact of
bat with the ball. Assuming that the semi-supervised
approach of bat segmentation is convincingly working
to give bat segments as output for every shot, we extract
discriminative shape features of these segments using an
approach proposed by Osada et al. [9]. First we extract
the boundary of the shape (bat) and then extract D1, D2

SD CD FL CT PL SW
SD 6 1 1 2 0 0
CD 1 8 0 1 0 0
FL 0 0 9 0 0 1
CT 3 1 0 6 0 0
PL 0 0 0 0 8 2
SW 0 0 1 0 2 7

TABLE 1: Confusion table for shot recognition using D2
shape distribution with euclidean distance as similarity
measure and nearest neighbor classifier. Here, the labels
SD, CD, FL, CT, PL and SW refers to Straight Drive,
Cover Drive, Flick, Cut, Pull and Sweep cricket shot
classes respectively.

and D3 shape distributions as mentioned in [9]. These
features are pictorially represented in Figure 3. In our
experiments, we have used euclidean distance and near-
est neighbor classifier with leave-one-out crossvalidation
approach to evaluate the performance of the framework.
The classification accuracy results of our semi-supervised
framework for D1, D2 and D3 shape distributions were
63.33, 73.33 and 65 respectively. The confusion table for
D2 (best performance) shape distribution is shown in
Table 1.

3.2 Automatic Bat Detection for Shot Recognition
In the previous section, we have seen that shape of the
bat at the time of impact is indicative of the shot. But
the proposed framework required a person to mark the
segment which had the bat. In this section, we propose a
framework to automate this process of bat segmentation.
The problem here is to identify the segment (outputs of
the segmentation algorithm) with a bat. We assume the
bat to be a rectangle and fit a rectangle to all segments.
The confidence score of a segment to have a bat is then
calculated as sum of distances between every point on
the boundary of the segment to the nearest side of the
rectangle. The segment with lowest score (corresponding
to best fit) is selected as the bat segment. This procedure
is done for the last 10 frames in the video where the
actual cricket shot exist.

After selection of a segment for all video frames, we
use shape distributions as a representative feature of the
bat and concatenate the shape distributions for all the
frames to form our feature vector. Similar to previous
section, we use euclidean distance with nearest neighbor
classifier to evaluate the performance of this framework.
The results are tabulated in Table 2. The classification
accuracy for D1, D2 and D3 shape distributions were
25, 30 and 28.33 respectively. It should be noted that
the problem addressed here is difficult due to various
reasons including, (a) the bat is not visible in many
video frames, (b) the size and shape of the bat varies
as the camera zooms in. The results achieved by this
experiment sounds encouraging taking these factors into
consideration and the fact that the proposed framework
is completely without any user interference.
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(a) Cover Drive (b) Cut (c) Flick

(d) Pull (e) Straight Drive (f) Sweep

Fig. 1: The videos of cricket shots collected from Youtube.com of four batsmen (left handed) forming six classes with
10 examples each.

Fig. 2: An example of bat position and shape for two
cricket shots (Straight Drive and Flick). The selected
frame is when the bat hits the ball. From the segments
(marked in various colors), the user selects a segment
with bat.

Fig. 3: Three shape distribution measures extracted from
the bat segments marked by user. This image was taken
from [9].

CD CT FL PL ST SW
CD 7 1 0 0 0 2
CT 3 1 2 0 2 2
FL 1 1 3 2 1 2
PL 2 0 2 2 3 1
ST 1 2 2 1 2 2
SW 4 1 1 1 0 3

TABLE 2: Confusion table for shot recognition using D2
shape distribution with euclidean distance as similarity
measure and nearest neighbor classifier. Here, the labels
SD, CD, FL, CT, PL and SW refers to Straight Drive,
Cover Drive, Flick, Cut, Pull and Sweep cricket shot
classes respectively.
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Fig. 4: Self-Similarity Matrix (SSM) extracted from body
joints. This image was taken from [10].

3.3 Global Features for Shot Recognition
The previous approaches based on bat segmentation for
shot recognition were extracting local features. In this
section, we propose a framework for shot recognition
with global features. We use Self-Similarity Matrix (SSM-
OF) [10] using optical flow approach for this purpose.
SSM is a graphical way to study the dynamics of a
system under consideration. It is based on the theory
of recurrence in dynamical system and provide a way
to visually analysis of this behavior. It has been previ-
ously used for action recognition in video and motion
capture data [10]. The SSM matrix is found to possess
this strong similarity within an action, which makes it a
suitable choice for feature extraction in action recognition
experiments. An example is shown in Figure 4.

The optical flow vectors computed on all n pixels
were concatenated to form a long feature vector of
size 2n. SSM matrix is then given by the euclidean
distance between the concatenated optical flow vectors
corresponding to the two frames Ii and Ij . It was seen
that these SSMs possessed unique texture patterns for
a cricket shot class. Then, we use Local Binary Patterns
(LBP) to extract features representative of these textures.
To evaluate this framework, we use the same nearest
neighbor with euclidean distance as our classifier. The
results are tabulated in Table 3. We achieve a classifica-
tion accuracy of 63.33% on leave-one-out crossvalidation
scheme. But it is important to note that the idea of global
feature extraction for shot recognition is not sufficient for
assessing the quality of cricket shots. This means that
local features are preferable for this application.

4 POSELET ACTIVATION VECTOR
Since, we wish to understand the dynamics of body parts
explicitly, we are not interested in generating a feature
vector for the entire object of interest, the batsman.
Hence, we use poselets [1] which are body part detectors
closely clustered both in appearance and configuration
space. Based on this, Maji [2] introduced the notion of
poselet activation vector (PAV), where given a bounding
box, the poselet activation vector is the vector with one
entry for each poselet, the entry signifies the amount
presence of that particular poselet. Thus for each frame

CD CT FL PL ST SW
CD 6 3 0 1 0 0
CT 1 4 3 1 1 0
FL 1 1 6 2 0 0
PL 1 1 1 6 1 0
ST 0 1 1 2 6 0
SW 0 0 0 0 0 10

TABLE 3: Confusion table for shot recognition using LBP
on SSM-OF feature with euclidean distance as similarity
measure and nearest neighbor classifier. Here, the labels
SD, CD, FL, CT, PL and SW refers to Straight Drive,
Cover Drive, Flick, Cut, Pull and Sweep cricket shot
classes respectively.

in the test clip, we track the batsman, and with the
bounding box thus generated from tracking as input, we
obtain a PAV for that frame. For tracking, we use off-the-
shelf code released with [11] .

5 MEASURING ‘WATCHABILITY’
Once action is recognized, we want to score the quality
of the movement of the batsman. To this end, we
divide the movement temporally into the three typical
movements of a batsman when he plays a shot, viz
stance, back-lift, and follow-through. Stance refers to the
movement of the batsman in the first few frames of the
test clip. Even though it lasts only for a few (about 2 to
3) frames, the stance contributes to the ‘’watchability’ of
the batsman significantly. The more upright and side-on
the batsman stands, greater is the ‘watchability’ of the
batsman. Back-lift refers to the movement of the batsman
after the stance but before the ball is delivered by the
bowler. This movement often is made so that they can
gather momentum which they can impart onto the ball
when the shot is played, and typically lasts for about 10
frames. Some batsmen like Brian Lara make exaggerated
body movements while some stay very still during
back-lift. While a player like Tendulkar who makes just
enough movement in his back-lift is considered to be
the benchmark. The third movement of the batsman,
follow-through refers to the movement of the batsman
after the shot is played, and can be considered as the
effect of the residual momentum after the shot is played.
This movement lasts for about 15 frames. The more
controlled and smooth the follow-through is, the greater
is the ‘watchability’ of the batsman.

5.1 Feature vector and scoring
For each of the three movements outline above, we
generate a sequence of poselet activation vectors,
[PAVi

1, ...PAV
i
Ni

[, where i = 1, 2, 3 indicate Stance, Back-
lift, and Follow-through respectively, and Ni is the num-
ber of frames in the ith movement. As stated earlier, the
poselet activation vectors implicitly the joint locations of
the body. For each poselet, we construct a time series
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given by [PAV i
1 (j), ...PAV i

Ni
(j)] for all j = 1, 2, .., P

where P is the number of poselets, and calculate the
largest lyapunov exponent [12], Lj

i determining the non-
linear dynamics of the time series. Now, the feature
vector for the ith movement of the test clip is given
by the vector of lyapunov exponents for all poselets,
(fi = [L1

i , L
2
i , .., L

P
i ].

Now, the ‘watchability’ score for each of the move-
ments is estimated from the feature vector for that move-
ment by using linear regression, as below.

vi = wT
i fi (1)

where vi is the score, and wi is the parameter vector for
the ith movement. The parameter vector wi is estimated
by minimizing the mean squared error.

ŵi = X+
i vi (2)

where vi is the vector of the scores of training videos and
Xi is the matrix of feature vectors for ith movement for
all training videos. Using the guidelines stated earlier in
the section, a score between 0 and 1 is given to each of
the three movements for all training videos.

6 EXPERIMENTS
As shown earlier, the action recognition results were
not as good as we wished them. Since, measurement
of ‘watchability’ depends on the action/shot recognized,
we ideally want perfect action results. Hence, to test the
effectiveness of our methodology to measure ‘watchabil-
ity’ of the shot, we assume that action/shot is recognized
correctly. While training, the more upright and side-
on are given higher scores than the front-on stances.
Figure 5 shows the true and predicted scores for various
stances. Figure 6 shows the true and predicted for some
instances of cut shot. For back-lift of cut-shot, the more
exaggerated the movement of the batsman is, the lesser
is the true score. The stiller batsman stays before the ball
is delivered, the higher is the score. Figure 7 shows the
true and predicted scores for some instances of follow-
throughs of pull shot. Figure 8 shows the true and
predicted scores for some instances of follow-throughs
of cover drive. The higher the right elbow is, the higher
is the true score, as the general consensus among the
followers of the game is that the elbow needs to be high
as possible for the shot to look good. From figures 5, 6, 7
and 8, it can be seen that predicted scores do not always
match the true scores. However, it is to born in mind that
the training set we have is very small, and also poselets
we used are not tuned to the cricket dataset we have.
For example, to predict score of follow-through of cover
drive, we need the poselet corresponding to the high
elbow to fire in most of the frames of follow-through.
However, there is no such poselet in the database we
contains high elbow. With careful construction of pose-
lets, and more training dataset, we hope to attain greater
accuracy in predicted scores.

7 CONTRIBUTIONS
We both together worked on the ideas to set-up the
introduction and problem statement. Kuldeep worked on
poselet activation vectors and measuring ‘watchability’
sections and Vinay worked on data collection and action
recognition.
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Fig. 5: True and Predicted ‘watchability’ scores of stances of various batsmen. The more upright and side-on the stance is, the
greater is the score.
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(b) Predicted Stance scores

Fig. 6: True and Predicted ‘watchability’ scores of back-lifts for cut shot.
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(a) True Stance scores (b) Predicted Stance scores

Fig. 7: True and Predicted‘watchability’ scores of follow-throughs for pull shot.
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Fig. 8: True and Predicted ‘watchability’ scores of follow-throughs for cover drive.
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