ReconNet: Non-iterative Reconstruction of Images from Compressively Sensed Measurements (Accepted at CVPR 2016)

Kuldeep Kulkarni^{†#}, Suhas Lohit^{†#}, Pavan Turaga^{†#}, Ronan Kerviche^{*} and Amit Ashok^{*} [†]School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ [#]School of Arts, Media and Engineering, Arizona State University, Tempe, AZ * College of Optical Sciences, University of Arizona, Tucson, AZ

Compressive Sensing (CS)

testbed layout [2]

- Recovering x from y is ill-posed but possible if x is sparse and MR (M/N) is sufficiently large.
- Iterative algorithms are computationally expensive and yield very low quality reconstructions at measurement rates of about 0.01.

CNNs.

Experimental Evaluation on Synthetic and Real Data

Mean reconstruction PSNR of test **set** (with denoiser and CS simulated)

Algorithm	MR = 0.25	MR = 0.1	MR = 0.04	MR = 0.01
TVAL3	27.87	22.86	18.40	11.34
NLR-CS	28.19	14.22	10.98	5.62
D-AMP	27.67	21.09	15.67	5.23
SDA	24.55	22.68	20.21	17.40
Ours	25.92	23.23	20.44	17.55

Reconstruction results of simulated CS data at MR = 0.1

[1] Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Learning a Deep Convolutional Network for Image Super-Resolution, in Proceedings of European Conference on Computer Vision (ECCV), 2014 [2] Ronan Kerviche, Nan Zhu, Amit Ashok. Information-optimal Scalable Compressive Imaging System, in Classical Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper CM2D.2.

ReconNet

Our solution: ReconNet - Datadriven, non-iterative based on

- Pros: Better reconstruction quality at very low measurement rates and a speed up of about 1000 compared to the iterative approaches.
- Rich semantic content is retained in the reconstruction, enabling effective high-level vision (e.g. tracking).

- Training set consists of 21760 pairs of CS measurement vectors (inputs) and the corresponding patches (desired outputs) from 91 natural images. Φ is a random Gaussian matrix.
- Test set: 11 standard test images.

ReconNet is computationally faster (about **1000x**) than iterative algorithms

Mean reconstruction time

Algorithm	MR = 0.25	MR = 0.1	MR = 0.04	MR = 0.01
TVAL3	2.943	3.223	3.467	7.790
NLR-CS	314.852	305.703	300.666	314.176
D-AMP	27.764	51.849	34.207	54.643
SDA	0.0042	0.0029	0.0025	0.0244
Ours	0.0213	0.0195	0.0192	0.0244

ReconNet performs better than iterative algorithms at low measurement rates and in the presence of noise

THE UNIVERSITY OF ARIZONA

- Architecture inspired by Super-Resolution CNN [1].
- A denoiser (BM3D) is used to remove the blocky artifacts.

Training for Different MRs

Training separate networks

- from scratch for every MR is not practical.
- Suboptimal solution:
- Fix all weights of the ReconNet units using a pre-trained network for a higher MR.
- Only train the FC layer.
- Training time for a new MR can be reduced to ~ 2s.

New Φ MR	0.1	0.08	0.04	0.01
Base N/w MR	0.25	0.1	0.1	0.25
Mean PSNR (dB)	21.73	20.99	19.66	16.60
Training Time (s)	2	2	2	2