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Ground Truth 25% measurements 4% measurements 1% measurements

Figure 1: Given the block-wise compressively sensed (CS) measurements, our non-iterative algorithm is capable of high quality reconstructions. Notice

how fine structures like tiger stripes or letter ‘A’ are recovered from only 4% measurements. Despite the expected degradation at measurement rate of

1%, the reconstructions retain rich semantic content in the image. For example, one can easily see that there are two tigers resting on rocks, although the

stripes are blurry. This clearly points us to the possibility of CS based imaging becoming a resource-efficient solution in applications, where the final goal

is high-level image understanding rather than exact reconstruction.

Abstract

The goal of this paper is to present a non-iterative and

more importantly an extremely fast algorithm to reconstruct

images from compressively sensed (CS) random measure-

ments. To this end, we propose a novel convolutional neu-

ral network (CNN) architecture which takes in CS measure-

ments of an image as input and outputs an intermediate re-

construction. We call this network, ReconNet. The interme-

diate reconstruction is fed into an off-the-shelf denoiser to

obtain the final reconstructed image. On a standard dataset

of images we show significant improvements in reconstruc-

tion results (both in terms of PSNR and time complexity)

over state-of-the-art iterative CS reconstruction algorithms

at various measurement rates. Further, through qualitative

experiments on real data collected using our block single

pixel camera (SPC), we show that our network is highly ro-

bust to sensor noise and can recover visually better quality

images than competitive algorithms at extremely low sens-

ing rates of 0.1 and 0.04. To demonstrate that our algorithm

can recover semantically informative images even at a low

measurement rate of 0.01, we present a very robust proof of

concept real-time visual tracking application.

1. Introduction

The easy availability of vast amounts of image data and

the ever increasing computational power has triggered the

resurgence of convolutional neural networks (CNNs) in the

past three years and consolidated their position as one of the

most powerful machineries in computer vision. Researchers

have shown CNNs to break records in the two broad cate-

gories of long-standing vision tasks, namely: 1) high-level

inference tasks such as image classification , object de-

tection, scene recognition , fine-grained categorization and

pose estimation [19, 13, 37, 35, 36] and 2) pixel-wise output

tasks like semantic segmentation, depth mapping, surface

normal estimation, image super resolution and dense optical

flow estimation [21, 11, 32, 6, 31]. However, the benefits of

CNNs have not been explored for one such important task

belonging to the latter category, namely reconstruction of
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images from compressively sensed measurements. In this

paper we adapt CNNs to develop an algorithm to recover

images from block CS measurements.

Motivation: The advances in compressive sensing theory

[8, 3, 4] (for the benefit of the readers, a brief background

on CS is provided later in the section) has led to the devel-

opment of many novel imaging devices [23, 27]. The cur-

rent CS imaging systems, such as the commercially avail-

able short-wave infrared single pixel camera, from Inview

Technology Corporation, provide the luxury of reduced and

fast acquisition of the image by taking only a small number

random projections of the scene, thus enabling compres-

sion at the sensing level itself. Such characteristics of the

acquisition system are highly sought-after in a) resource-

constrained environments like UAVs where generally, com-

putationally expensive methods are employed as a post-

acquisition step to compress the fully acquired images, and

b) applications such as Magnetic Resonance Imaging (MRI)

[22] where traditional imaging methods are very slow. As

an undesirable consequence, the computational load is now

transferred to the decoding algorithm which reconstructs

the image from the CS measurements or the random pro-

jections.

Over the past decade, a plethora of reconstruction algo-

rithms [2, 10, 26, 1, 20, 18, 34, 28, 24, 7] have been pro-

posed. However, almost all of them are plagued by a num-

ber of similar drawbacks. Firstly, current approaches solve

an optimization problem to reconstruct the images from the

CS measurements. Very often, the iterative nature of the

solutions to the optimization problems renders the algo-

rithms computationally expensive with some of them even

taking as many as 20 minutes to recover just one image,

thus making real-time reconstruction impossible. Secondly,

in many resource-constrained applications, one may be in-

terested only in some property of the scene like ‘Where is

a particular object in the image?’ or ‘What is the person in

the image doing?’, rather than the exact values of all pix-

els in the image. In such scenarios, there is a great urge to

acquire as few measurements as possible, and still be able

to recover an image which retains enough information re-

garding the property of the scene that one is interested in.

The current approaches, although slow, are capable of de-

livering high quality reconstructions at high measurement

rates. However, their performance degrades appreciably as

measurement rate decreases, yielding reconstructions which

are not useful for any image understanding task. Motivated

by these, in this paper we present a CS image recovery al-

gorithm which has the desired features of being computa-

tionally light as well as being capable of delivering reason-

able quality reconstructions useful for image understanding

tasks, even at extremely low measurement rates of 0.01. The

contributions of our paper are the following:

Contributions: a) We propose a non-iterative and ex-

tremely fast reconstruction algorithm for block CS imaging

[12]. To the best of our knowledge, there exists no pub-

lished work which achieves these desirable features. b) We

introduce a novel class of CNN architectures called Recon-

Net which takes in CS measurements of an image block as

input and outputs the reconstructed image block. Further,

the reconstructed image blocks are arranged appropriately

and fed into an off-the-shelf denoiser to recover the full im-

age. c) Through experiments on a standard dataset of im-

ages, we show that, in terms of mean PSNR of reconstructed

images, our algorithm beats the nearest competitor by con-

siderable margins at measurement rates of 0.1 and below.

Further, we validate the robustness of ReconNet to arbitrary

sensor noise by conducting qualitative experiments on real-

data collected using our block SPC. We achieve visually

superior quality reconstructions than the traditional CS al-

gorithms. d) We demonstrate that the reconstructions retain

rich semantic content even at a low measurement rate of

0.01. To this end, we present a proof of concept real-time

application, wherein object tracking is performed on-the-fly

as the frames are recovered from the CS measurements.

Background: Compressive Sensing (CS) is a signal ac-

quisition paradigm which provides the ability to sample

a signal at sub-Nyquist rates. Unlike traditional sensing

methods, in CS, one acquires a small number of random lin-

ear measurements, instead of sensing the entire signal, and

a reconstruction algorithm is used to recover the original

signal from the measurements. Mathematically, the mea-

surements are given by y = Φx + e, where x ∈ R
n is

the signal, y ∈ R
m, known as the measurement vector, de-

notes the set of sensed projections, Φ ∈ R
m×n is called the

measurement matrix defined by a set of random patterns,

and e ∈ R
m is the measurement noise. Reconstructing x

from y when m < n is an ill-posed problem. However,

CS theory [8, 3] states that the signal x can be recovered

perfectly from a small number of m =O(s log(n
s

)) random

linear measurements by solving the optimization problem

in Eq. 1, provided the signal is s-sparse in some sparsifying

domain, Ψ.

min
x

||Ψx||1 s.t ||y −Φx||2 ≤ ǫ. (1)

Variants of the optimization problem with relaxed spar-

sity assumption in Eq. 1 have been proposed for the com-

pressible signals as well. However, all such algorithms suf-

fer from drawbacks as already discussed.

2. Related Work

The previous works can be divided into two broad cat-

egories, namely CS image reconstruction algorithms and

CNNs for per-pixel output tasks.

CS image reconstruction: Several algorithms have been

proposed to reconstruct images from CS measurements.
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Figure 2: Overview of our non-iterative block CS image recovery algorithm.

The earliest algorithms leveraged the traditional CS theory

described above [8, 3, 2] and solved the l1-minimization in

Eq. 1 with the assumption that the image is sparse in some

transform-domain like wavelet, DCT, or gradient. However,

such sparsity-based algorithms did not work well, since im-

ages, though compressible, are not exactly sparse in the

transform domain. This heralded an era of model-based

CS recovery methods, wherein more complex image mod-

els that go beyond simple sparsity were proposed. Model-

based CS recovery methods come in two flavors. In the

first, the image model is enforced explicitly [10, 1, 18, 28],

wherein in each iteration the image estimate is projected

onto the solution set defined by the model. These mod-

els, often considered under the class of ‘structured-sparsity’

models, are capable of capturing the higher order dependen-

cies between the wavelet coefficients. However, generally

a computationally expensive optimization is solved to ob-

tain the projection. In the second, the algorithms enforce

the image model implicitly through a non-local regulariza-

tion term in the objective function [26, 34, 7]. Recently, a

new class of recovery methods called approximate message

passing (AMP) algorithms [9, 30, 24] have been proposed,

wherein the image estimate is refined in each iteration using

an off-the-shelf denoiser. To the best of our knowledge there

exists no published work which proposes a non-iterative so-

lution to the CS image recovery problem. However, there

has been one concurrent and independent investigation (pa-

per on arXiv.org, but not yet peer-reviewed or published

[25]) that presents stacked denoising auto-encoders (SDAs)

based non-iterative approach for this problem. Different

from this, in this paper we present a convolutional archi-

tecture, which has fewer parameters, and is easily scalable

to larger block-size at the sensing stage, and also results in

better performance than SDAs.

CNNs for per-pixel prediction tasks: Computer vision

researchers have applied CNNs to per-pixel output tasks

like semantic segmentation [21], depth estimation [11], sur-

face normal estimation [32], image super-resolution [6]

and dense optical flow estimation from a single image[31].

However, these tasks differ fundamentally from the one

tackled in this paper in that they map a full-blown image to a

similar-sized feature output, while in the CS reconstruction

problem, one is required to map a small number of random

linear measurements of an image to its estimate. Hence, we

cannot use any of the standard CNN architectures that have

been proposed so far. Motivated by this, we introduce a

novel class of CNN architectures for the CS recovery prob-

lem at any arbitrary measurement rate.

3. Overview of Our Algorithm
Unlike most computer vision tasks like recognition or

segmentation to which CNNs have been successfully ap-

plied, in the CS recovery problem, the images are not in-

puts but rather outputs or labels which we seek to obtain

from the networks. Hence, the typical CNN architectures

which can map images to rich hierarchical visual features

are not applicable to our problem of interest. How does one

design a network architecture for the CS recovery problem?

To answer this question, one can seek inspiration from the

CNN-based approach for image super-resolution proposed

in [6]. Similar to the character of our problem, the outputs in

image super-resolution are images, and the inputs – lower-

resolution images – are of lower dimension. In [6], initial

estimates of the high-resolution images are first obtained

from low-resolution input images using bicubic interpola-

tion, and then a 3-layered CNN is trained with the initial

estimates as inputs and the ground-truth of the desired out-

puts as labels. If we were to adapt the same architecture for

the CS recovery problem, we will have to first generate the

initial estimates of the reconstructions from CS measure-

ments. A straightforward option would be to run one of the

several existing CS recovery algorithms and obtain initial

estimates. But how many iterations do we need to run to

ensure a good initial estimate? Running for too many in-

creases computational load, defeating the very goal of this

paper of developing a fast algorithm, but running for too

few could lead to extremely poor estimates.

Due to the aforementioned reasons, we relinquish the

idea of obtaining initial estimates of the reconstructions,

and instead propose a novel class of CNN architectures

called ReconNet which can directly map CS measurements

to image blocks. The overview of our ReconNet driven al-

gorithm is given in Figure 2. The scene is divided into non-

overlapping blocks. Each block is reconstructed by feeding

in the corresponding CS measurements to ‘ReconNet’. The

reconstructed blocks are arranged appropriately to form an

intermediate reconstruction of the image, which is input to

an off-the-shelf denoiser to remove blocky artifacts and ob-

tain the final output image.

Network architecture: Here, we describe the proposed

CNN architecture, ‘ReconNet’ shown as part of Figure 2.
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The input to the network is an m-dimensional vector of

compressive measurements, denoted by Φx, where Φ is the

measurement operator of size m × n, m is the number of

measurements and x is the vectorized input image block. In

our case, we train networks capable of reconstructing blocks

of size 33 × 33, hence n = 1089. This block size is cho-

sen so as to reduce the network complexity and hence, the

training time, while ensuring a good reconstruction quality.

The first layer is a fully connected layer that takes com-

pressive measurements as input and outputs a feature map

of size 33 × 33. The subsequent layers are all convolu-

tional layers inspired by [6]. Except the final convolutional

layers, all the other layers use ReLU following convolution.

All feature maps produced by all convolutional layers are of

size 33× 33, which is equal to the block size. The first and

the fourth convolutional layers use kernels of size 11 × 11
and generate 64 feature maps each. The second and the fifth

convolutional layers use kernels of size 1 × 1 and generate

32 feature maps each. The third and the last convolutional

layer use a 7× 7 and generate a single feature map, which,

in the case of the last layer, is also the output of the net-

work. We use appropriate zero padding to keep the feature

map size constant in all layers.

Denoising the intermediate reconstruction: The inter-

mediate reconstruction (Figure 2) is denoised to remove the

artifacts resulting due to block-wise processing. We choose

BM3D [5] as the denoiser since it gives a good trade-off be-

tween computational complexity and reconstruction quality.

4. Learning the ReconNet

In this section, we discuss in detail training of deep net-

works for reconstruction of CS measurements. We use the

network architecture shown in Figure 2 for all the cases.

Ground truth for training: We use the same set of 91
images as in [6]. We uniformly extract patches of size

33× 33 from these images with a stride equal to 14 to form

a set of 21760 patches. We retain only the luminance com-

ponent of the extracted patches (For RGB images, during

test time we use the same network to recover the individual

channels). These form the labels of our training set. We

obtain the corresponding CS measurements of the patches.

These form the inputs of our training set. Experiments in-

dicate that this training set is sufficient to obtain very com-

petitive results compared to existing CS reconstruction al-

gorithms, especially at low measurement rates.

Input data for training: To train our networks, we need

CS measurements corresponding to each of the extracted

patches. To this end, we simulate noiseless CS as fol-

lows. For a given measurement rate, we construct a mea-

surement matrix, Φ by first generating a random Gaussian

matrix of appropriate size, followed by orthonormalizing its

rows. Then, we apply y = Φx to obtain the set of CS mea-

surements, where x is the vectorized version of the lumi-

nance component of an image patch. Thus, an input-label

pair in the training set can be represented as (Φx,x). We

train networks for four different measurement rates (MR) =

0.25, 0.10, 0.04 and 0.01. Since, the total number of pix-

els per block is n = 1089, the number of measurements

n = 272, 109, 43 and 10 respectively.

Learning algorithm details: All the networks are trained

using Caffe [15]. The loss function is the average recon-

struction error over all the training image blocks, given by

L({W}) = 1

T

∑T

i ||f(yi, {W})− xi||2, and is minimized

by adjusting the weights and biases in the network, {W} us-

ing backpropagation. T is the total number of image blocks

in the training set, xi is the ith patch and f(yi, {W}) is the

network output for ith patch. For gradient descent, we set

the batch size to 128 for all the networks. For each measure-

ment rate, we train two networks, one with random Gaus-

sian initialization for the fully connected layer, and one with

a deterministic initialization, and choose the network which

provides the lower loss on a validation test. For the latter

network, the jth weight connecting the ith neuron of the

fully connected layer is initialized to be equal to ΦT
i,j . In

each case, weights of all convolutional layers are initialized

using a random Gaussian with a fixed standard deviation.

The learning rate is determined separately for each network

using a linear search. All networks are trained on a Nvidia

Tesla K40 GPU for about a day each.

5. Experimental Results
In this section, we conduct extensive experiments on

both simulated data and real data, and compare the perfor-

mance of our CS recovery algorithm with state-of-the-art

CS image recovery algorithms, both in terms of reconstruc-

tion quality and time complexity.

Baselines: We compare our algorithm with three iterative

CS image reconstruction algorithms, TVAL3 [20], NLR-CS

[7] and D-AMP [24]. We use the code made available by the

respective authors on their websites. Parameters for these

algorithms, including the number of iterations, are set to the

default values. We use BM3D [5] denoiser since it gives a

good trade-off between time complexity and reconstruction

quality. The code for NLR-CS provided on author’s web-

site is implemented only for random Fourier sampling. The

algorithm first computes an initial estimate using a DCT or

wavelet based CS recovery algorithm, and then solves an

optimization problem to get the final estimate. Hence, ob-

taining a good estimate is critical to the success of the al-

gorithm. However, using the code provided on the author’s

website, we failed to initialize the reconstruction for ran-

dom Gaussian measurement matrix. Similar observation

was reported by [24]. Following the procedure outlined

in [24], the initial image estimate for NLR-CS is obtained
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Image Name Algorithm
MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D

Barbara

TVAL3 [20] 24.19 24.20 21.88 22.21 18.98 18.98 11.94 11.96

NLR-CS [7] 28.01 28.00 14.80 14.84 11.08 11.56 5.50 5.86

D-AMP [24] 25.89 25.96 21.23 21.23 16.37 16.37 5.48 5.48

SDA [25] 23.19 23.20 22.07 22.39 20.49 20.86 18.59 18.76

Ours 23.25 23.52 21.89 22.50 20.38 21.02 18.61 19.08

Fingerprint

TVAL3 22.70 22.71 18.69 18.70 16.04 16.05 10.35 10.37

NLR-CS 23.52 23.52 12.81 12.83 9.66 10.10 4.85 5.18

D-AMP 25.17 23.87 17.15 16.88 13.82 14.00 4.66 4.73

SDA 24.28 23.45 20.29 20.31 16.87 16.83 14.83 14.82

Ours 25.57 25.13 20.75 20.97 16.91 16.96 14.82 14.88

Flintstones

TVAL3 24.05 24.07 18.88 18.92 14.88 14.91 9.75 9.77

NLR-CS 22.43 22.56 12.18 12.21 8.96 9.29 4.45 4.77

D-AMP 25.02 24.45 16.94 16.82 12.93 13.09 4.33 4.34

SDA 20.88 20.21 18.40 18.21 16.19 16.18 13.90 13.95

Ours 22.45 22.59 18.92 19.18 16.30 16.56 13.96 14.08

Lena

TVAL3 28.67 28.71 24.16 24.18 19.46 19.47 11.87 11.89

NLR-CS 29.39 29.67 15.30 15.33 11.61 11.99 5.95 6.27

D-AMP 28.00 27.41 22.51 22.47 16.52 16.86 5.73 5.96

SDA 25.89 25.70 23.81 24.15 21.18 21.55 17.84 17.95

Ours 26.54 26.53 23.83 24.47 21.28 21.82 17.87 18.05

Mean PSNR

TVAL3 27.84 27.87 22.84 22.86 18.39 18.40 11.31 11.34

NLR-CS 28.05 28.19 14.19 14.22 10.58 10.98 5.30 5.62

D-AMP 28.17 27.67 21.14 21.09 15.49 15.67 5.19 5.23

SDA 24.72 24.55 22.43 22.68 19.96 20.21 17.29 17.40

Ours 25.54 25.92 22.68 23.23 19.99 20.44 17.27 17.55

Table 1: PSNR values in dB for 4 of the test images (see supplementary for the remaining) using different algorithms at different measurement rates. At

low measurement rates of 0.1, 0.04 and 0.01, our algorithm yields superior quality reconstructions than the traditional iterative CS reconstruction algorithms,

TVAL3, NLR-CS, and D-AMP. It is evident that the reconstructions are very stable for our algorithm with a decrease in mean PSNR of only 8.37 dB as the

measurement rate decreases from 0.25 to 0.01, while the smallest corresponding dip in mean PSNR for classical reconstruction algorithms is in the case of

TVAL3, which is equal to 16.53 dB.

by running D-AMP (with BM3D denoiser) for 8 iterations.

Once the initial estimate is obtained, we use the default pa-

rameters and obtain the final NLR-CS reconstruction. We

also compare with the unpublished concurrent work [25]

which presents a SDA based non-iterative approach to re-

cover from block-wise CS measurements. At the time of

writing, the authors had not made either the training set or

the pre-trained models publicly available. Here, we com-

pare our algorithm with our own implementation of SDA,

and show that our algorithm outperforms the SDA. For fair

comparison, we denoise the image estimates recovered by

baselines as well. The only parameter to be input to the

BM3D algorithm is the estimate of the standard Gaussian

noise, σ. To estimate σ, we first compute the estimates of

the standard Gaussian noise for each block in the interme-

diate reconstruction given by σi =
√

||yi−Φxi||2

m
, and then

take the median of these estimates.

5.1. Simulated data

For our simulated experiments, we use a standard set of

11 grayscale images, compiled from two sources 1,2. We

conduct both noiseless and noisy block-CS image recon-

struction experiments at four different measurement rates

1
http://dsp.rice.edu/software/DAMP-toolbox

2
http://see.xidian.edu.cn/faculty/wsdong/NLR_Exps.htm

0.25, 0.1, 0.04 and 0.01.

Reconstruction from noiseless CS measurements: To

simulate noiseless block-wise CS, we first divide the image

of interest into non-overlapping blocks of size 33× 33, and

then compute CS measurements for each block using the

same random Gaussian measurement matrix as was used to

generate the training data for the network corresponding to

the measurement rate. The PSNR values in dB for both

intermediate reconstruction (indicated by w/o BM3D) as

well as final denoised versions (indicated by w/ BM3D) for

the measurement rates are presented in Table 1. It is clear

from the PSNR values that our algorithm outperforms tra-

ditional reconstruction algorithms at low measurement rates

of 0.1, 0.04 and 0.01. Also, the degradation in performance

with lower measurement rates is more graceful.

Further, in Figure 3, we show the final reconstructions of

parrot and house images for various algorithms at measure-

ment rate of 0.1. From the reconstructed images, one can

notice that our algorithm, as well as SDA are able to retain

the finer features of the images while other algorithms fail

to do so. NLR-CS and DAMP provide poor quality recon-

struction. Even though TVAL3 yields PSNR values compa-

rable to our algorithm, it introduces undesirable artifacts in

the reconstructions.
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Ground Truth

Parrot

House

NLR-CS

PSNR: 14.1562 dB

PSNR: 14.7976 dB

TVAL3

PSNR: 23.1616 dB

PSNR: 26.3154 dB

D-AMP

PSNR: 21.6421 dB

PSNR: 24.7059 dB

SDA

PSNR: 22.3468 dB

PSNR: 26.0677 dB

Ours

PSNR: 23.2287 dB

PSNR: 26.6573 dB

Figure 3: Reconstruction results for parrot and house images from noiseless CS measurements at measurement rate of 0.1. It is evident that our algorithm

recovers more visually appealing images than other competitors. Notice how fine structures are recovered by our algorithm.

Algorithm MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

TVAL3 2.943 3.223 3.467 7.790

NLR-CS 314.852 305.703 300.666 314.176

D-AMP 27.764 31.849 34.207 54.643

ReconNet 0.0213 0.0195 0.0192 0.0244

SDA 0.0042 0.0029 0.0025 0.0045

Table 2: Time complexity (in seconds) of various algorithms (without

BM3D) for reconstructing a single 256 × 256 image. By taking only

about 0.02 seconds at any given measurement rate, ReconNet can recover

images from CS measurements in real-time, and is 3 orders of magnitude

faster than traditional reconstruction algorithms.

Time complexity: In addition to competitive reconstruc-

tion quality, for our algorithm without the BM3D denoiser,

the computation is real-time and is about 3 orders of magni-

tude faster than traditional reconstruction algorithms. To

this end, we compare various algorithms in terms of the

time taken to produce the intermediate reconstruction of a

256 × 256 image from noiseless CS measurements at var-

ious measurement rates. For traditional CS algorithms, we

use an Intel Xeon E5-1650 CPU to run the implementa-

tions provided by the respective authors. For ReconNet and

SDA, we use a Nvidia GTX 980 GPU to compute the re-

constructions. The average time taken for the all algorithms

of interest are given in table 2. Depending on the measure-

ment rate, the time taken for block-wise reconstruction of a

256×256 for our algorithm is about 145 to 390 times faster

than TVAL3, 1400 to 2700 times faster than D-AMP, and

15000 times faster than NLR-CS. It is important to note that

the speedup achieved by our algorithm is not solely because

of the utilization of the GPU. It is mainly because unlike

traditional CS algorithms, our algorithm being CNN based

relies on much simpler convolution operations, for which

very fast implementations exist. More importantly, the non-

iterative nature of our algorithm makes it amenable to par-

allelization. SDA, also a deep-learning based non-iterative

algorithm shows significant speedups over traditional algo-

rithms at all measurement rates.
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Figure 4: Comparison of different algorithms in terms of mean PSNR

(in dB) for the test set in presence of Gaussian noise of different standard

deviations at MR = 0.25, 0.10 and 0.04.

Performance in the presence of noise: To demonstrate

the robustness of our algorithm to noise, we conduct re-

construction experiments from noisy CS measurements.

We perform this experiment at three measurement rates -

0.25, 0.10 and 0.04. We emphasize that for ReconNet and

SDA, we do not train separate networks for different noise

levels but use the same networks as used in the noiseless

case. To first obtain the noisy CS measurements, we add

standard random Gaussian noise of increasing standard de-

viation to the noiseless CS measurements of each block. In

each case, we test the algorithms at three levels of noise

corresponding to σ = 10, 20, 30, where σ is the standard

deviation of the Gaussian noise distribution. The interme-

diate reconstructions are denoised using BM3D. The mean

PSNR for various noise levels for different algorithms at

different measurement rates are shown in Figure 4. It can

be observed that our algorithm beats all other algorithms at

high noise levels. This shows that the method proposed in

this paper is extremely robust to all levels of noise.

5.2. Experiments with real data

The previous section demonstrated the superiority of our

algorithm over traditional algorithms for simulated CS mea-
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surements. Here, we show that our networks trained on sim-

ulated data can be readily applied for real world scenario

by reconstructing images from CS measurements obtained

from our block SPC. We compare our reconstruction results

with other algorithms.

Scalable Optical Compressive Imager Testbed: We im-

plement a scalable optical compressive imager testbed simi-

lar to the one described in [17, 16]. It consists of two optical

arms and a discrete micro-mirror device (DMD) acting as a

spatial light modulator as shown in Figure 5. The first arm,

akin to an imaging lens in a traditional system, forms an op-

tical image of the scene in the DMD plane. It has a 40◦ field

of view and operates at F/8. The DMD has a resolution of

1920 × 1080 micro-mirror elements, each of size 10.8µm.

However, in our system the field of view (FoV) is limited

to an image circle of 7.5mm, which is approximately 700

DMD pixels. The DMD micro-mirrors are bi-stable and

each is either oriented half-way toward the second arm or

in the opposite direction (when the flux is discarded). The

micro-mirrors can be switched in either direction at a very

high rate to effectively achieve 8 bits gray-scale modulation

via pulse width modulation. The optically modulated scene

on the DMD plane is then imaged (by the second arm) and

spatially integrated by a 1/3”, 640 × 480 CCD focal plane

array with a measurement depth of 12 bits. In the CCD

plane, the field of view is 3mm in diameter (≈ 400 CCD

pixels). Thus, in effect, this testbed implements several sin-

gle pixel cameras [29] in parallel. Each block on the DMD

effectively maps to a super pixel (e.g. 2 × 2 binned pix-

els) on the CCD. The DMD sequences (in time) through m

projections, implementing the m rows of the m × n pro-

jection matrix Φ, where each projection vector appears as

a
√
n ×√

n block pattern, replicated across the scene FoV.

Before data acquisition, a calibration step is performed to

map the DMD blocks to CCD detector pixels to character-

ize any deviation from the idealized system model.

Figure 5: Compressive imager testbed layout with the object imaging

arm in the center, the two DMD imaging arms are on the sides.

Reconstruction experiments: We use the set up de-

scribed above to obtain the CS measurements for 383 blocks

(size of 33×33) of the scene. Operating at MR’s of 0.1 and

TVAL3 D-AMP Ours

Figure 6: The figure shows reconstruction results on 3 images collected

using our block SPC operating at measurement rate of 0.1. The recon-

structions of our algorithm are qualitatively better than those of TVAL3

and D-AMP.
TVAL3 D-AMP Ours

Figure 7: The figure shows reconstruction results on 3 images collected

using our block SPC operating at measurement rate of 0.04. The recon-

structions of our algorithm are qualitatively better than those of TVAL3

and D-AMP.

0.04, we implement the 8-bit quantized versions of mea-

surement matrices (orthogonalized random Gaussian matri-

ces). The measurement vectors are input to the correspond-

ing networks trained on the simulated CS measurements to

obtain the block-wise reconstructions as before and the in-

termediate reconstruction is denoised using BM3D. Figures

6 and 7 show the reconstruction results using TVAL3, D-

AMP and our algorithm for three test images at MR = 0.10
and 0.04 respectively. It can be observed that our algorithm

yields visually good quality reconstruction and preserves

more detail compared to others, thus demonstrating the ro-

bustness of our algorithm.

5.3. Training strategy for a different Φ

In the experimental results presented earlier in this sec-

tion, we assumed that the measurement matrix used to ob-

tain the measurements of a test example is the same as the

measurement matrix used to obtain the measurements of the

training examples. However, in a practical scenario, this

may not always be true, wherein one may wish to recon-
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struct the images from CS measurements obtained using an

arbitrarily different random Φ. Training a new network for

the new Φ of a desired MR, as noted above, generally takes

about 1 day, and hence may not be a feasible solution. To

circumvent this problem, we propose a suboptimal, yet ef-

fective and computationally light training strategy outlined

below, ideally suited to scenarios such as above, which will

eliminate the need to train the network from scratch. Specif-

ically, we adapt the convolutional layers (C1-C6) of a pre-

trained network for the same or slightly higher MR, hence-

forth referred to as the base network, and train only the fully

connected (FC) layer with random initialization for 1000 it-

erations (or equivalent time of around 2 seconds on a Ti-

tan X GPU), while keeping C1-C6 fixed. The mean PSNR

(without BM3D) for the test-set at various MRs, the time

taken to train models and the MR of the base network are

given in table 3. From the table, it is clear that the overhead

New Φ MR 0.1 0.08 0.04 0.01

Base network MR 0.25 0.1 0.1 0.25

Mean PSNR (dB) 21.73 20.99 19.66 16.60

Training Time (seconds) 2 2 2 2

Table 3: Networks for a new Φ can be obtained by training only the

FC layer of the base network at minimal computational overhead, while

maintaining comparable PSNRs.

in computation for new Φ is trivial, while the mean PSNR

values are comparable to the ones presented in table 1. We

note that it may be possible to obtain better quality recon-

structions at the cost of more training time if C1-C6 layers

are also fine-tuned along with FC layer.

6. Real-time high level vision from CS imagers
In the previous section, we have shown how our ap-

proach yields good quality reconstruction results in terms

of PSNR over a broad range of measurement rates. De-

spite the expected degradation in PSNR as the measurement

rate plummets to 0.01, our algorithm still yields reconstruc-

tions of 15-20 dB PSNR and rich semantic content is still

retained. As stated earlier, in many resource-constrained in-

ference applications the goal is to acquire the least amount

of data required to perform high-level image understand-

ing. To demonstrate how CS imaging can applied in such

scenarios, we present an example proof of concept real-time

high level vision application - tracking. To this end we sim-

ulate video CS at a measurement rate of 0.01 by obtaining

frame-wise block CS measurements on 15 publicly avail-

able videos [33] (see supplementary for the list of videos)

used to benchmark tracking algorithms. Further, we per-

form object tracking on-the-fly as we recover the frames of

the video using our algorithm without the denoiser. For ob-

ject tracking we use a state-of-the-art algorithm based on

kernelized correlation filters [14]. We call the aforemen-

tioned pipeline, ReconNet+KCF. For comparison, we con-

duct tracking on original videos as well. Figure 8 shows the

average precision curve over the 15 videos, in which each

datapoint is the mean percentage of frames that are tracked

correctly for a given location error threshold. Using a lo-

cation error threshold of 20 pixels, the average precision

over 15 videos for ReconNet+KCF at 1% MR is 65.02%,

whereas tracking on the original videos yields an average

precision value of 83.01%. ReconNet+KCF operates at

around 10 Frames per Second (FPS) for a video with frame

size of 480 × 720 to as high as 56 FPS for a frame size of

240 × 320. This shows that even at an extremely low MR

of 1%, using our algorithm, effective and real-time tracking

is possible by using CS measurements. More results can be

found in the supplementary material.
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Figure 8: The figure shows the variation of average precision with loca-

tion error threshold for ReconNet+KCF and original videos. For a location

error threshold of 20 pixels, ReconNet+KCF achieves an impressive aver-

age precision of 65.02%.

7. Conclusion

We have presented a CNN-based non-iterative solution

to the problem of CS image reconstruction. We showed that

our algorithm provides high quality reconstructions on both

simulated and real data for a wide range of measurement

rates in real time. We note that the non-iterative and par-

allelizable nature of our algorithm lends itself to further re-

duction in its computationally complexity as more powerful

GPUs emerge. Through a proof of concept real-time track-

ing application at the very low measurement rate of 0.01,

we demonstrated the possibility of CS imaging becoming

a resource-efficient solution in applications where the final

goal is high-level image understanding rather than exact re-

construction. However, the existing CS imagers are not ca-

pable of delivering real-time video. We hope that this work

will give the much needed impetus to building of more prac-

tical and faster video CS imagers.
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