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ABSTRACT

Recent advances in camera architectures and associated math-
ematical representations now enable compressive acquisition
of images and videos at low data-rates. In such a setting, we
consider the problem of human activity recognition, which is
an important inference problem in many security and surveil-
lance applications. We propose a framework for understand-
ing human activities as a non-linear dynamical system, and
propose a robust, generalizable feature that can be extracted
directly from the compressed measurements without recon-
structing the original video frames. The proposed feature is
termed recurrence texture and is motivated from recurrence
analysis of non-linear dynamical systems. We show that it
is possible to obtain discriminative features directly from the
compressed stream and show its utility in recognition of ac-
tivities at very low data rates.'

Index terms : Activity Analysis, Inference from Compres-
sive Cameras

1. INTRODUCTION

Recent years have seen significant progress in the fields of
compressive sensing, which allows signal reconstruction at
sub-Nyquist sampling rates by exploiting additional structure
on the signal being sensed. This is most often in the form
of sparsity in an appropriately chosen basis [1]. A signifi-
cant body of work now exists that deals with algorithms for
recovery of the original signal from such compressed mea-
surements. There is a tremendous breadth of such techniques,
and we refer to recent compilations for a comprehensive sur-
vey [2, 3]. However, much less attention has been devoted
to the question of whether higher-level inference tasks such
as detection and recognition can be performed without recon-
structing the original signal/images. Recent work shows that
simpler tasks like background subtraction[4]are possible us-
ing compressive sensing without reconstruction. The general
problem of activity recognition is difficult to address since
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many features that are useful for object and activity recogni-
tion tasks require non-linear feature extraction techniques.[5]
explored the utility of CS as a compression tool for features
that have already been extracted from the original video, but
did not address direct feature extraction from CS measure-
ments of images. Typical features useful for activity anal-
ysis include histogram of gradients (HOG) [6], optical flow
[71, 3D SIFT [8], contours [9] etc. Activity recognition has
a rich and long history in computer vision, and we refer to
recent surveys on this topic [10]. It is quite difficult to obtain
such complex features directly from the compressive mea-
surements without an intermediate step of signal reconstruc-
tion. Thus, there is a growing need to explore novel features
that retain robustness and accuracy, yet are amenable to ex-
traction directly from compressed measurements. Recently a
linear dynamical system (LDS) was used to recover videos
from CS cameras in [11]. LDS models are useful for video
reconstruction, but being generative models they are sensitive
to spatial/view transforms, thus require further processing to
obtain robust recognition performance.

Since we do not wish to reconstruct images, it is interest-
ing to consider what class of features could be preserved when
the video signal is projected from the high dimensional pixel-
space into a low dimensional space. In this context, we revisit
the Johnson—Lindenstrauss (JL) lemma [12] which states that
a small set of points in a high-dimensional space can be em-
bedded into a much lower dimensional space in a manner that
nearly preserves relative distances between the points. This
suggests, that one might consider extracting features which
encode the geometric properties of the video signal, since
these properties would be preserved in the compressed do-
main as well. However, the question remains whether such
geometric properties contain sufficient discriminative infor-
mation for the purposes of activity classification.

The raw geometric relationship between points in high-
dimensions is often encoded in terms of distance matrices or
affinity matrices [13, 14]. However, it is in general not triv-
ial to compare the geometries of two high-dimensional point
clouds. On a related note, recurrence quantification anal-
ysis (RQA) has been recently proposed as a tool to quan-



tify fine variations in non-linear dynamical system parame-
ters [15, 16, 17]. These techniques have also been widely
adopted in various studies in behavioral sciences [18]. Re-
currence plots are similar to affinity matrices, and are closely
related to the geometric properties of the dynamical system.
A similar approach has been proposed for view-robust activ-
ity recognition using temporal self-similarities [19].

Contributions: In this paper, we make the following con-
tributions. 1) We study the problem of human activity recog-
nition from compressive cameras using the geometric proper-
ties of high-dimensional video data, 2) We present a concep-
tually simple yet robust method for quantifying this geometric
information in terms of recurrence textures, 3) We show the
utility of this method for performing robust activity recogni-
tion at very low data rates.

Organization: The rest of the paper is organized as fol-
lows. In section 2 we provide a theoretical framework to con-
sider the problem of human activity analysis in compressive
cameras. In section 3, we discuss the proposed geometric
analysis of video via recurrence analysis, and associated fea-
ture extraction. In section 4, we present experimental results,
and conclusions in section 5.

2. PROBLEM FORMULATION

When a sequence of images is acquired by a compressive
camera, the measurements are generated by a sensing strategy
which maps the image space Z € RY to an observation space
Z € RM  The overall mapping consists of a transformation F'
from the 3D scene-space S to image-space, with the addition
of noise n in the sensor, followed by the measurement matrix
¢, which gives measurements 7,

I(t) = F o S(t) + n(t) (1)
Z(t) = ¢I(t) )

Here S(t) refers to a model of the scene (such as a CAD
model) with a human performing an action. Compressive
sensing represents a succession of data-reduction operations,
going from the full-blown space of 3D scenes to image-space,
and then to measurement-space. Assuming that the changes
in the scene are due to a human performing some activity, we
seek features that can be extracted directly from the sequence
of measurements {Z(¢)}. Since we do not intend to recon-
struct the image-sequence, we are restricted in our ability to
extract meaningful features. However, the JL-lemma suggests
that the general geometric relations of a set of points in a
high-dimensional space can be preserved by certain embed-
dings into a low-dimensional space. In the case of compres-
sive sensing, this embedding is achieved by the random mea-
surement matrix ¢, in other words orthogonally projecting to
RM . The preserving of relative distances between images un-
der such an embedding motivates us to explore the notion of
recurrence plots[15]. Further, considering that the system de-

fined in (2) is a non-linear dynamical system, we consider un-
derstanding the system properties via its recurrence properties
[16, 17].

3. RECURRENCE TEXTURES AND
CLASSIFICATION OF ACTIVITIES

Recurrence plots (RPs) are a visualization tool for dynamical
systems. A recurrence matrix defined as

R(i,7) = 0(e — [|zi — xj]l2) 3)

where x; is the observed time series and 6(.) is the Heavi-
side step function. RPs, which are thus binary images dis-
playing black dots where the values are within the threshold
€, are shown to capture the system’s behavior and be distinc-
tive for different dynamical systems. At the time instant ¢,
the compressive measurement of the image observation (the
tt" frame of the video sequence) is Z(t) € RM. Thus, if a
sufficient number of measurements are taken, then with high
probability the RPs for the compressed {Z(t)} and uncom-
pressed signals {I(¢)} will be the same. This is a straightfor-
ward consequence of the JL-lemma.

Thus, we propose to use the recurrence relations of
{Z(t)} as a means to acquire discriminative features from
activities. In order to quantify the structures in RPs, a set of
measures known as Recurrence Quantitative Analysis have
been proposed by [15, 16, 17]. However, the lumped nature
of RQA measures do not capture the dynamics of different
system unambiguously, sometimes yielding similar RQA
measures for structurally dissimilar RPs [20]. Moreover, the
RPs themselves are very sensitive to the threshold, leading
to different structures for different thresholds for the same
system. These limitations motivate us to make use of the
full geometric information encoded in the non-thresholded
recurrence matrices.

We term the non-thresholded recurrence matrices simply
as ‘Distance’ matrices. But instead of calculating the distance
matrix for the time series obtained from the sequence of mea-
surements, we calculate it for the time series obtained by tak-
ing the first derivative measurements (successive difference
operation). Thus, for each sequence of compressive measure-
ments {Z(t)} the distance matrix is a square-symmetric ma-
trix, D of size (T — 1) x (T — 1), given by

D(i,§) = | Z(i) = Z(j)|2 )

where Z(i) = Z(i + 1) — Z(i). We perform this successive
difference operation as a way to remove the effects of a static
background, so that that features are more sensitive to move-
ment in the scene. On visualizing the distance matrices as
intensity images as shown in figure 1, it is clear that different
activities give rise to widely different recurrence textures.
Motivated by this, we pose the problem of classification
of the dynamical system as a texture recognition problem. To
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Fig. 1. Row1: Examples of different activities from UMD dataset; Row2: Corresponding recurrence texture representations of

the actions.

this end, we utilize a computationally simple yet powerful
texture classification method based on local binary patterns
(LBPs) [21]. Certain LBPs termed as ‘uniform’ are funda-
mental properties of image texture and and their occurrence
histogram is proven to be a powerful texture feature.

4. EXPERIMENTS

For experiments, we choose the UMD Human Activity
Dataset [22]. This database consists of 10 different activi-
ties: Bend, Jog, Push, Squat, Wave, Kick, Batting, Throw,
Turn Sideways and Pick Phone. Each activity was repeated
10 times, so there were a total of 100 sequences in the dataset.
Each sequence consists of 80 images and were cropped to a
resolution of 331 x 301. Each image is sensed compressively
at measurement factors of 100, 400, 800, 1000 and 1200 by
taking the corresponding number of random measurements.
Since the background is relatively static, in each sequence,
differences of compressive measurements of successive im-
ages are taken to remove the effect of the static background.
These difference measurements are used to generate a dis-
tance matrix of size 79 x 79 for each sequence. As explained
in section 3, these distance matrices are viewed as textures.

We used local binary pattern features [21] to classify the
textures. Thus, each sequence is represented by LBP fea-
ture descriptor of length 38 which gives the normalized his-
tograms of 38 binary patterns. For this experiment, we per-
formed a leave-one-execution-out test, in which we trained on
9 executions and tested on the remaining execution for all ac-
tivities using a simple nearest-neighbor classifier. In table 1,
we show the confusion matrix obtained for the activity recog-
nition experiment using the proposed method for a compres-
sion factor of 100. The classification accuracy is obtained to
be 90%.

In table 2, we present average recognition results when
the compression ratio was varied across a broad range of val-
ues. We observe that the proposed framework works very well
across a wide variety of compression factors. These are en-
couraging and positive results, which suggest that significant

[(Actvity [ 1] 2[3] 4] 5[6] 7[8] 9[10]
1 10| 0{0| O] OjO|] O|O| O} O
2 0100 O OJ]O| OjO] O O
3 0| 019 1 00| 0|0 O| O
4 0 0j0O|10| O]O| O|O] O O
5 0| 0{0] O|J10|0| O|O| O} O
6 31 0{0] O O|6| 0]1 0|0
7 0 0{0] O] Oj]O]10|0O| O} O
8 1 ojof oy 0|0 0|7 111
9 0o 0{0] O] O|]O] O|]O|10| O
10 0| 0j0| O 0|0 0[{2| 0| 8

Table 1. Confusion table for activity recognition experiment
using compressive measurements at a compression ratio =
100. The confusion matrix exhibits a strong diagonal struc-
ture, which implies that most activities are recognized cor-
rectly.

| Compression factor | Recognition Rate |

Uncompressed 90%
100 90%
400 86%
800 84%
1000 81%
1200 80%

Table 2. Activity recognition rate for different compression
factors. The recognition rates are quite stable even at very
high compression rates.

performance improvements are possible by a careful choice of
features and classifiers. The UCSD Traffic Dataset[23] con-
sists of 254 videos capturing traffic of three types: light, mod-
erate, and heavy. Each video is of length 50 frames at a reso-
lution of 64 x 64 pixels. We perform a classification experi-
ment of the videos into these three categories. There are four
different train-test scenarios provided with the dataset. For
comparison, firstly at fixed compression ratio of 25X, we per-



form the same experiments with CS-LDS[24] as well as our
method. The results show that our method performs signifi-

’ \ Expt.1 \ Expt.2 \ Expt.3 \ Expt.4 ‘
Our method 92.06 | 92.19 | 8594 | 92.06
CS-LDS(d=10) | 84.12 87.5 89.06 | 85.71

Table 3. Classification results (in %) on the UCSD Traffic
Dataset.

cantly better than CS-LDS method for the compression ratio.
Secondly, we perform the 4 experiments using our method for
different compression ratios.

| Compression ratio | Expt.1 | Expt.2 | Expt.3 | Expt.4 |

25x% 92.06 | 92.19 | 8594 | 92.06
150 % 88.89 | 78.13 | 78.13 | 82.54
300x 87.30 | 82.81 | 76.56 | 82.54

Table 4. Classification results at different compression ratios
(in %) on the UCSD Traffic Dataset.

S. CONCLUSIONS AND DISCUSSIONS

In this paper, we presented a framework to address human
activity recognition from compressive cameras. This has po-
tential applications in a wide variety of resource constrained
contexts such as in remote air-borne surveillance, or home-
based security and health-care systems. We proposed a so-
lution based on dynamical analysis via recurrence relations,
which has an interpretation in terms of geometric structures
of high-dimensional data. We showed that these geometric
structures are preserved even in the compressed domain, and
do contain significant discriminative information to recognize
activities at very low data-rates. This opens up several lines
of further research. One question would be to consider theo-
retical guarantees that relate preservation of geometric struc-
tures to the proposed features. Further, we expect significant
performance improvements on using more sophisticated clas-
sifiers and feature selection techniques.
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